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4,752 contain at least one 
experimentally solved 3D structure

4,886 can be modeled to some extent 
using comparative homology modeling

5,211 with no known structure and no 
structurally characterized homologs...

14,849 Pfam protein families



Ab initio/de novo structure prediction is not very good… so use 
evolutionary couplings

Balakrishnan et al, Proteins 2011



Approach
Used to calculate a simple covariance matrix, but too many false positives. 
(Positions that covary, but are not structurally linked.)

GREMLIN is one technique that mitigates this error (learns a probabilistic 
graphical model from a multiple sequence alignment)



Approach
Combine GREMLIN with existing de novo prediction software from Rosetta

… but still limited by the amount of sequence data available.



~2 billion partial and full-length proteins from ~5000 
metagenomes from the Integrated Microbial Genomes 
database

Use metagenomics data!

Wooley et al, PLOS Comput Biol 2010



Nf: a metric that describes how amenable a protein family is to this method, by relating the length of the 
protein, the number of sequences in the family, and the diversity of the sequences

How useful was this extra data?



How do we assess the quality of a predicted structure? 

It turns out structure prediction convergence is a good measure for the quality of 
the prediction



Findings
Metagenomic data allowed 
prediction 33% of unmodeled 
Pfams (compared with 16% 
without metagenome data)

612 new Pfams predicted

137 of these are novel folds



Strengths
Leveraged advances over the last ~10 years in high-throughput sequencing 
(especially in metagenomics), and in evolutionary coupling analysis.

This methods has generated one of the largest advances ever in structural 
genomics (quality predictions generated for >600 new families and >100 novel 
folds discovered), with promises of more as more sequence data becomes 
available.



Limitations
The algorithm doesn’t explicitly model the presence of membrane bilayers or 
endogenous ligands.

How generalizable is this method? Even for families with Nf > 64, prediction 
calculations converge just over half of the time.

Bacterial genomes and proteins are highly overrepresented in metagenomics 
studies.



Limitations

We still can’t predict structure for over 
half of the families with unknown 
structure. (But is this even a fair criticism?)



Potential Next Steps
Can this be used at all to improve current homology modeling methods?

Can we improve the method to predict more structures with less sequences (i.e. 
at lower Nf values)? 

Can we predict or incorporate functional sites into the predictions?



Questions?
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Crea0ng Protein Contact Maps



Protein Contact Maps

hBp://www.bioinformaJcs.org/cmview/screenshots.html	



Exis0ng Contact Predic0on Methods

•  EvoluJonary	Coupling	Analysis	(ECA)	
•  PSICOV	
•  plmDCA	
•  Gremlin	
•  CCMpred	

•  Supervised	Machine	Learning	
•  MetaPSICOV		
•  SVMSEQ	
•  CMAPpro	
•  PconsC2	
•  PhyCMAP	
•  CoinDCA-NN	
•  CMAPpro	

**Not	an	exhausJve	list.	



ECA Driven Contact Predic0on Uses 
Correla0ons Between Residues



Supervised Machine Learning Incorporates 
More Context

PconsC2	Contact	Predic5on	



Crea0ng Protein Contact Maps

Deep Residual Learning





Deep Residual Learning for RaptorX Contact 
Predic0on



Protein Features for the First Residual Network

PosiJon-Specific	
Scoring	Matrix	(PSSM)	

(L	x	20	Matrix)		

Predicted	Secondary	
Structure	(3x3	Matrix)	

Predicted	Solvent	
Accessibility	(3x3	Matrix)	+	 +	

Concatenated	to	create	a	Lx26	matrix	for	
use	in	the	first	residual	network.	

1D	Residual	Network	

Matrix	ConcatenaJon	

Learned	SequenJal	Features	
(L	x	n	Matrix)	



Protein Features for Second Residual Network

Learned	SequenJal	Features	
(L	x	n	Matrix)	

Conversion	to	2D	

Pairwise	Features	(L	x	L	x	3n)	 Mutual	informaJon	
EvoluJonary	Coupling	
informaJon	provided	

by	CCMpred	

	
Pair-wise	
contact	
potenJal	

	

+	 +	+	

Merge	

2D	Residual	Network	

LogisJc	Regression	

Predicted	Contact	Map	
(L	x	L	Matrix)	



Deep Residual Learning

Accuracy of Predicted Contact Maps



Training Set

•  Subset	of	PDB25	
• All	proteins	have	less	than	25%	sequence	idenJty	with	any	other	
protein	
•  6767	proteins	
• Contains	only	~100	membrane	proteins	



Test Set

•  150	Pfam	families	
•  105	CASP11	test	proteins	
•  76	hard	CAMEO	test	proteins	from	2015	
•  	398	membrane	proteins	

•  400	residues	at	most	
•  At	most	40%	sequence	idenJty	



Contact Predic0on via Deep Residual Learning 
Has High Accuracy

Short	sequence	distance	between	two	residues	is	in	the	range	[6,11]	
Medium	sequence	distance	between	two	residues	is	in	the	range	[12,23]	
Long	sequence	distance	between	two	residues	is	in	the	range	≥	24	

Accuracy	is	defined	as	the	percent	of	the	top	L/k	predicted	contacts	that	correspond	to	naJve	contacts	
where	L	is	the	length	of	the	protein.	
	
RaptorX	Contact	Predic5on	(bo:om	row)	has	higher	accuracy	than	the	compared	methods	for	all	
sequence	distance	ranges.	
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Increased Performance Due to Deep Residual Learning 
is Independent of Available Homologous Informa0on



Accuracy of Predicted Contact Maps

Contact-Assisted Protein Folding Results



Contact-Assisted Protein Folding Benefits 
from Deep Residual Learning



Learned Features Are Not Template-Based 



Contact-Assisted Protein Folding Results

CAMEO Blind Tests



CAMEO Blind Tests of Contact Predic0on



CAMEO Blind Tests of Contact Predic0on



CAMEO Blind Tests

Strengths/Weaknesses



Strengths
• Very	thorough	in	comparing	its	predicJons	against	different	types	of	
proteins	and	predicJon	approaches.	

• Uses	a	non-redundant	training	set.		

• Considers	all	residue	pairs	for	contact	simultaneously.	

• Blind	tesJng	through	CAMEO.	

• Performs	surprisingly	well	on	membrane	proteins.	



Weaknesses
	
•  Use	of	extensive	hidden	layers	makes	learned	features	difficult	to	describe.	

•  Does	not	quanJfy	its	false-posiJve	rate.		

•  Is	not	as	unique	an	approach	as	implied	(see	PConsC2).		

•  Does	not	compare	its	method	of	contact	map	predicJon	to	that	of	
PConsC2.	

•  Tested	membrane	proteins	were	constrained	



Supervised Machine Learning Incorporates 
More Context

PconsC2	Contact	Predic5on	



Test Set

•  150	Pfam	families	
•  105	CASP11	test	proteins	
•  76	hard	CAMEO	test	proteins	from	2015	
•  	398	membrane	proteins	

•  400	residues	at	most	
•  At	most	40%	sequence	idenJty	


