Single-Particle Cryo-Electron Microscopy

Robbie Ostrow, Trevor Tsue and Shalom Rottman-Yang

What is Cryo-EM?

- Finds 3-D structure of molecules
- Developed in the 1970s, but massive development in the last few years
 - Better cameras and more processing power
- 2017 Nobel Prize!

onature

How does Cryo-EM work?

CRYO-ELECTRON MICROSCOPY A beam of electron is fired at a frozen protein solution. The emerging scattered electrons pass through a lens to create a magnified image on the detector, from which their structure can be worked out. Electron protein sample Electron beam

- Protein Purification and specimen preparation
- 2. Take a 2-D image (or a series of images) with an electron microscope
- 3. Pick out particles
- 4. Classify and align
- 5. 3-D reconstruction
- 6. Refine and validate
- 7. Done! (Maybe?)

Wikimedia Commons

 Every one of these steps has its own set of challenges.

Image of C. thermophilum lysate

 Protein Purification and specimen preparation

- Can be tricky, depending on the particle.
- Vacuum dries out particles
- Electrons damage unprotected particles
- Straining/vitrification are the most common techniques.

2. Take a 2-D image (or a series of images) with an electron microscope

- Contrast very low
 - Images need to be taken out of focus!
- Microscopes have to be calibrated extraordinarily well
- Lots of noise
- Each image is essentially a noisy
 2-D shadow at a random angle

3. Pick out particles

- Too many to do by hand, but often lacking a good model
- RELION

http://people.csail.mit.edu/gdp/cryoem.html

4. Classify and align

- 2-D images need to be clustered to create 3-D reconstruction
 - But 3-D reconstruction needed to get the right clustering!

4. 3-D Reconstruction

- Combine 2-D projections
- Filtered back-projection

http://people.csail.mit.edu/gdp/cryoem.html

Advantages of Cryo-EM

- Despite all of the difficulties, still often easier (and much cheaper) then crystallography
 - Especially for large particles
- Crystallography can change the conformation of particles

Improvements being made on all of these steps.

- 1. Protein Purification and specimen preparation
 - a. Minimize heterogeneity (and classify)
- 2. Take a 2-D image (or a series of images) with an electron microscope
- 3. Pick out particles
- 4. Classify and align
- 5. 3-D reconstruction
- 6. Refine and validate
- 7. Done! (Maybe?)

Trajectories of the ribosome as a Brownian nanomachine

Dashti et. al.

How does Cryo-EM work?

- 1. Protein Purification and specimen preparation
 - a. Minimize heterogeneity (and classify)
- 2. Take a 2-D image (or a series of images) with an electron microscope
- 3. Pick out particles
- 4. Classify and align
- 5. 3-D reconstruction
- 6. Refine and validate
- 7. Done! (Maybe not?)

The ribosome as a Brownian machine

- Exploits random motions of the molecules in its environment to do work.
- Ribosome is widely regarded as a prototypical machine.
- But almost every protein acts as a Brownian nanomachine.

Sample preparation

- Yeast 80S Ribosome
- 849,914 images from ~4700 micrographs
- No (or very little) mRNA or tRNA

Algorithm

Manifolds

 Space that is locally homeomorphic to Euclidean space.

Formally,

$$\mathbf{B}^n = ig\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + x_2^2 + \dots + x_n^2 < 1 ig\}$$

Conformational manifolds

Energy landscape

- Reconstructed from relative proportions of samples in micrographs
- Susceptible to bias?

2D Movie

Made with **Giffox**

3D Movie

Results

Strengths

- Split cryo-EM structures into 50 classes, rather than the usual 5.
- Allows a movie to be made based on inferred free-energy
- Easily extensible to other types of particles

Limitations

- Non-translating ribosomes might not traverse the same paths.
- No way to confirm correctness except "looks like it makes sense"
- How useful is a composite movie?
- Movie is based on close-ness, not time. (can't distinguish between forwards and backwards time)
- Some ribosomes were selected by hand

Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta

Wang R.Y., Song Y., Barad B.A., Cheng Y., Fraser J.S., DiMaio F.

Background

- Cryo-EM can provide near-atomic resolution
- All-atom models can be built from density maps given by cryo-EM
 - Atom coordinates cannot be assigned precisely
 - Some molecular interactions may not be captured
- Currently, usually build model into the density map manually

Automatic refinement in this paper

3-stage approach to automatically refine manually-traced cryo-EM models

Versus previous work

- Had previously created a tool for local rebuilding for refining homology models
- Improvements in this approach allow for correcting significant backbone errors

Stage 1a: Model refinement using training map

 Takeaway: Relax the structure and then choose the worst fitting residues

- Training map is a 'half-map' a full 3d density map created using only half of the cryo-EM data
- Run Rosetta relax (wiggles sidechains to trigger local strain)
- Choose the worst residues:

$$Z_{error}^{(i)} = w_{dens} \cdot Z_{dens}^{(i)} + w_{lcldens} \cdot Z_{lcldens}^{(i)} + w_{bonded} \cdot Z_{bonded}^{(i)} + w_{rama} \cdot Z_{rama}^{(i)}$$

- learn weights from known structure dataset
- fit-to-density is measured by real-space correlation coefficient

1a: Why include model strain?

Stage 1b: Iterative fragment-based rebuilding

- Takeaway: Rebuild fragments of the model with Monte Carlo sampling
- Choose a 'bad' residue
- Choose a set of known backbone conformations based on local sequence
- Run Monte Carlo (randomized, small-step) optimizations using energy functions and fit-to-density
- Take the best result using fit-to-density
- After iteration with 1a, run LocalRelax (repeatedly choose a residue with many nearby residues, and run relax on that neighborhood)

1b: Why optimize locally and not globally?

Stage 2: Model selection

 Takeaway: Select the best models using validation map and then full map

- Choose best models from stage 1 as according to:
 - Fit to validation 'half-map'
 - Model geometry (MolProbity score)
 - Fit to full map

Stage 3: Model optimization

 Takeaway: Further refine selected models against full map without overfitting

- Voxel-size refinement: optimize voxel size and origin of map density based on RSCC with experimental map
- Coordinate refinement: Rosetta LocalRelax with the full (not half-) map

Applying to 3 solved cryo-EM reconstructions: TRPV1

- Capsaicin receptor / vanilloid receptor 1
- Better MolProbity score (model geometry), slightly worse fit-todensity, and better EMRinger score (model-to-map backbone agreement)
- Found disulfide link not built in manual model

Applying to 3 solved cryo-EM reconstructions: F_{420} -reducing [NiFe] hydrogenase complex

- Assembly of proteins with many covalently-bound ligands
- Better MolProbity and EMRinger scores, but worse fit-todensity

Applying to 3 solved cryo-EM reconstructions: mitochondrial ribosome large subunit

- 48 protein chains and 2 RNA chains
- Better MolProbity score on all protein chains due to better backbone geometry

Strengths

- Can handle backbone errors
- Uses physically based forcefield and known structures to 'fill in' information missing due to resolution
- Can avoid overfitting (lower fit-to-density but better model geometry)
- Not manual!

Limitations

Table 2. Comparison of structure refinement results between Rosetta and phenix.real_space_refine*.

	RSCC** ^{†,‡} validation map	iFSC* ^{,†,§} validation map	EMRinger Score* ^{,†} validation map	MolProbity [†]				
				Score	Clash score	Rotamer outliers [%]	Ramachandran favored [%]	Number of residues with better RSCC ^{†,¶}
TRPV1	0.785 / 0.790	0.546 / 0.566	1.84 / 1.90	1.59 / 1.48	4.30 / 2.14	0.00 / 0.00	94.41 / 91.72	86 / 250
Frh	0.835 / 0.835	0.504 / 0.517	1.36 / 1.27	1.68 / 1.62	7.99 / 3.66	0.68 / 0.13	96.31 / 92.67	677 / 1328
Mitoribosome	0.832 / 0.832	0.476 / 0.478	2.05 / 1.98	1.88 / 1.62	6.17 / 4.08	0.38 / 0.00	90.19 / 93.49	415 / 564

 phenix used 0.24 CPU hours; Rosetta used 5000 CPU hours (5 hrs per trajectory)

Limitations

- Only looks at applicability to three structures; no wider-scale evaluation of performance
- Not especially elegant
- Still requires a manually traced model to start from

A Bayesian View on Cryo-EM Structure Determination

Sjors H. W. Scheres

2D to 3D

- 2D Reconstruction
 - Particle Alignment
 - Particle Picking
 - Clustering
- 3D Reconstruction
 - Combine 2D Images
 - Back Projection
 - Filtering

Difficulties

- Noise
- Random Orientations
- Potential Bias in Clustering (Chicken and Egg Problem)
- Overfitting

Signal to Noise Ratio (SNR)

Low SNR

High SNR

Chicken and Egg

Caveat: Model Bias

Overfitting

Smoothness

- Prevent overfitting of noise
- Limits reconstruction at frequencies where SNR is low
- Implemented through *ad hoc* filtering procedures

A Statistical Approach

- Old Approach: particle alignment, class averaging, filtering, and 3D reconstruction
- New Approach: maximize a single probability function

Bayes' Theorem

$P(\Theta | X, Y) \propto P(X | \Theta, Y) P(\Theta | Y)$

$$P(X_i | \phi, \Theta, Y) = \prod_{j=1}^{J} \frac{1}{2\pi\sigma_{ij}^2} \exp \times \left(\frac{|X_{ij} - CTF_{ij} \sum_{l=1}^{L} \mathbf{P}_{jl}^{\phi} V_l|^2}{-2\sigma_{ij}^2} \right)$$

$$P(X|\Theta,Y) = \prod_{i=1}^{N} \int_{\Phi} P(X_{i}|\Phi,\Theta,Y)P(\Phi|\Theta,Y)d\Phi$$

$$P(\Theta|Y) = \prod_{l=1}^{L} \frac{1}{2\pi\tau_{l}^{2}} \exp\left(\frac{|V_{l}|^{2}}{-2\tau_{l}^{2}}\right)$$

$$\Gamma_{i\phi}^{(n)} = \frac{P(X_i | \phi, \Theta^{(n)}, Y) P(\phi | \Theta^{(n)}, Y)}{\int_{\phi'} P(X_i | \phi', \Theta^{(n)}, Y) P(\phi' | \Theta^{(n)}, Y) d\phi'}$$

$$V_{l}^{(n+1)} = \frac{\sum_{i=1}^{N} \int_{\phi} \Gamma_{i\phi}^{(n)} \sum_{j=1}^{J} \mathbf{P}^{\phi_{lj}^{T}} \frac{\text{CTF}_{ij} X_{ij}}{\sigma_{ij}^{2(n)}} d\phi}{\sum_{i=1}^{N} \int_{\phi} \Gamma_{i\phi}^{(n)} \sum_{j=1}^{J} \mathbf{P}^{\phi_{lj}^{T}} \frac{\text{CTF}_{ij}^{2}}{\sigma_{ij}^{2(n)}} d\phi + \frac{1}{\tau_{l}^{2(n)}}}$$

$$\tau_l^{2(n+1)} = \frac{1}{2} |V_l^{(n+1)}|^2$$

$$\sigma_{ij}^{2(n+1)} = \frac{1}{2} \int_{\Phi} \Gamma_{i\Phi}^{(n)} |X_{ij} - \text{CTF}_{ij} \sum_{l=1}^{L} |\mathbf{P}_{jl}^{\Phi} V_{l}^{(n)}|^{2} d\Phi$$

NOTE: There is a parameter T

Intuition

- Assume noise and signals are both independent and Gaussian distributed
- Same assumptions as old filters
- Smoothness: limits power at high frequency components
- Prevent overfitting
- Maximize a single probability function

Noise Reduction

Old Method: XMIPP New Method: MAP

Resolution Increased

Minority Classes Discovered (K=4)

Strengths

- Standardizes reconstruction (more objective)
- Takes out most arbitrary decisions
- Focus on one task (probability function) instead of multiple steps
- Allows use of more powerful prior knowledge

Limitations

- Doesn't completely remove parameters
 - K classes and T
- Assumes independence of Fourier components and noise
- Didn't tune parameters for XMIPP