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What is Cryo-EM? e Finds 3-D structure of molecules
e Developed in the 1970s, but

massive development in the last
few years
o Better cameras and more
processing power

o 2017 NobeIPrize!
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CRYO-ELECTRON MICROSCOPY I o
A beam of electron is fired at a frozen - \< ‘)
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protein solution. The emerging
scattered electrons pass through a
lens to create a magnified image on
the detector, from which their
structure can be worked out.
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How does Cryo-EM

work?

CRYO-ELECTRON MICROSCOPY
A beam of electron is fired at a frozen
protein solution. The emerging
scattered electrons pass through a
lens to create a magnified image on
the detector, from which their
structure can be worked out.
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Protein Purification and specimen
preparation

Take a 2-D image (or a series of
images) with an electron
microscope

Pick out particles

Classify and align

3-D reconstruction

Refine and validate

Done! (Maybe?)
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e Every one of these steps has
own set of challenges

Image of C. thermophilum lysate
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Difficulties of Cryo_EM e Can be tricky, depending on the

particle.

e \acuum dries out particles

1. Protein Purification and e Electrons damage unprotected
specimen preparation particles

e Straining/vitrification are the most
common techniques.




Difficulties of Cryo-EM

2. Take a 2-D image (or a series
of images) with an electron
microscope

Contrast very low
o Images need to be taken out

of focus!
Microscopes have to be calibrated
extraordinarily well
Lots of noise
Each image is essentially a noisy
2-D shadow at a random angle



Difficulties of CryO_EM e Too many to do by hand, but often

lacking a good model
e RELION

3. Pick out particles

electron beam

gy iy

http://people.csail.mit.edu/gdp/cryoem.html



Difficulties of Cryo_EM e 2-Dimages need to be clustered

to create 3-D reconstruction
o But 3-D reconstruction

4. Classify and align needed to get the right

clustering!
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leflcu|t|es of Cryo_EM e Combine 2-D projections

e Filtered back-projection

4. 3-D Reconstruction

http://people.csail.mit.edu/gdp/cryoem.html
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Advantages of CryO_ e Despite all of the difficulties, still
=\

often easier (and much cheaper)
then crystallography
o Especially for large particles
e Crystallography can change the
conformation of particles




Improvements being
made on all of these

steps.

S -

. Protein Purification and specimen

preparation
a. Minimize heterogeneity (and
classify)
Take a 2-D image (or a series of
images) with an electron
microscope
Pick out particles
Classify and align
3-D reconstruction
Refine and validate
Done! (Maybe?)



Trajectories of the ribosome as a
Brownian nanomachine

Dashti et. al.




How does Cryo-EM
work"?

N o Ok

. Protein Purification and specimen

preparation
a. Minimize heterogeneity (and
classify)
Take a 2-D image (or a series of
images) with an electron
microscope
Pick out particles
Classify and align
3-D reconstruction
Refine and validate
Done! (Maybe not?)



The ribosome as a Brownian machine

e Exploits random motions of the
molecules in its environment to
do work.

e Ribosome is widely regarded as
a prototypical machine.

e But almost every protein acts as
a Brownian nanomachine.

Wikimedia Commons




Sample preparation

Yeast 80S Ribosome
849,914 images from ~4700
micrographs

e No (or very little) mMRNA or tRNA

Dashti et. al.



Algorithm

START

Determine snapshot
orientations

Select snapshots
within orientational
aperture

Find conformational
manifold

Determine number of

degrees of
freedom

Repeat for many
orientations

Compile 2D movie
along selected
trajectory

Reconstruct energy
landscape

Map to space of
known
eigenfunctions

Patch information
from different
orientations

Compile 3D movie
along selected
trajectory

FINISH



Manifolds

e Space that is locally
homeomorphic to Euclidean
space.

Formally,
B" = {(wl,mz,...,xn) e R" | $%+m§+-..+m% < 1}

Wikimedia commons



Conformational manifolds

Dashti et. al.



Energy landscape

e Reconstructed from relative
proportions of samples in
micrographs

e Susceptible to bias?




2D Movie




3D Movie




Solvent
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Energy (kcal/Mol)

+R: increase intersubunit rotation
+HC: increase 40S head closure
+HS: increase 40S head swivel
+L1C: increase L1-stalk closing




o Split cryo-EM structures into 50
classes, rather than the usual 5.

o Allows a movie to be made based
on inferred free-energy

e Easily extensible to other types of
particles




e Non-translating ribosomes might
not traverse the same paths.

e No way to confirm correctness
except “looks like it makes sense”

e How useful is a composite movie?

e Movie is based on close-ness, not
time. (can’t distinguish between
forwards and backwards time)

e Some ribosomes were selected by
hand




Automated structure refinement of
macromolecular assemblies from
cryo-EM maps using Rosetta

Wang R.Y., Song Y., Barad B.A., Cheng Y., Fraser J.S., DiMaio F.




Background

* Cryo-EM can provide near-atomic resolution

* All-atom models can be built from density maps given by cryo-EM
* Atom coordinates cannot be assigned precisely
 Some molecular interactions may not be captured

e Currently, usually build model into the density map manually



Automatic refinement in this paper

 3-stage approach to automatically refine manually-traced cryo-EM
models

Refine models against Select models Optimize models against
training-map full-reconstruction
9, Select top 200
Coordinate
refinement

Select problematic 3 \ } | \-7 modeis using
residues using a \ validation-map
\_ A

new error predictor f i’" agreement

iterat 1 e lT iterate
“ - iigcet';c;ﬁtﬁ%ooc? gfﬁ& > Voxel-size

Fix errors through

iterative fragment- | g, 488 =€ model geometry < : refinement
based rebuilding - \ ' 8 1 ° % - 1
Pick top 10 ‘ N
models with best - i\ B-factor
full-map refinement
agreement




Versus previous work

* Had previously created a tool for local rebuilding for refining
homology models

* Improvements in this approach allow for correcting significant
backbone errors



Stage 1la: Model refinement using training

map

* Takeaway: Relax the structure and then choose the worst fitting

residues

Refine models against
training-map

Select problematic
residues using a

Fix errors through
iterative fragment-
based rebuilding

new error predictor | Y

* Training map is a ‘half-map’ - a full 3d density map
created using only half of the cryo-EM data

* Run R)osetta relax (wiggles sidechains to trigger local
strain

 Choose the worst residues:

Z.) = Waens  Zyons + Wictdens * Zyoigons + Woonded * Zyngea +Wrama * ZL1)

rama

* |earn weights from known structure dataset

* fit-to-density is measured by real-space correlation
coefficient



1la: Why include model strain?
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Stage 1b: Iterative fragment-based rebuilding

* Takeaway: Rebuild fragments of the model with Monte Carlo sampling

* Choose a ‘bad’ residue
* Choose a set of known backbone conformations based on local sequence

* Run Monte Carlo (randomized, small-step) optimizations using energy
functions and fit-to-density

* Take the best result using fit-to-density

 After iteration with 1a, run LocalRelax (repeatedly choose a residue with
many nearby residues, and run relax on that neighborhood)



1b: Why optimize locally and not globally?

Deposited Cartesian relax Local relax

—

Mitoribosome
chain 2

v




Stage 2: Model selection

* Takeaway: Select the best models using validation map and then full

map

* Choose best models from stage 1 as according to:
* Fit to validation ‘half-map’
* Model geometry (MolProbity score)

e Fit to full map

Select models

Select top 200
models using
validation-map
agreement

|

| Select top 50 -’ ',‘ ?‘é‘.

models with good 4

-
model geometry _§§"¢(.° :%’- p

l o Rdthr.
Pick top 10 J SN, Fsc
models with best - \\
full-map '

agreement o L Wl




Stage 3: Model optimization

* Takeaway: Further refine selected models against full map

without overfitting

* Voxel-size refinement: optimize voxel size and origin of
map density based on RSCC with experimental map

e Coordinate refinement: Rosetta LocalRelax with the full
(not half-) map

Optimize models against
full-reconstruction

Coordinate
refinement

Voxel-size
refinement

!

B-factor
refinement




Applying to 3 solved cryo-EM reconstructions:
TRPV1

* Capsaicin receptor / vanilloid receptor 1
* Better MolProbity score (model geometry), slightly worse fit-to-
density, and better EMRinger score (model-to-map backbone

agreement)
 Found disulfide link not built in manual model

B Deposited Rosetta Rosetta ensemble

Rosetta




Applying to 3 solved cryo-EM reconstructions:
F,,o-reducing [NiFe] hydrogenase complex

* Assembly of proteins with many covalently-bound ligands

* Better MolProbity and EMRinger scores, but worse fit-to-
density

>

Deposited
Rosetta

- No violations
l- Bond lengths
- Bond angles
- Dihedral angles

~ Planar groups

- Ramachandran outliers




Applying to 3 solved cryo-EM reconstructions:
mitochondrial ribosome large subunit

* 48 protein chains and 2 RNA chains

* Better MolProbity score on all protein chains due to better backbone
geometry
C

Density map Deposited Rosetta Rosetta ensemble

Mitoribosome
chain k




Strengths

e Can handle backbone errors

* Uses physically based forcefield and known structures to ‘fill in’
information missing due to resolution

* Can avoid overfitting (lower fit-to-density but better model geometry)
* Not manual!



Table 2. Comparison of structure refinement results between Rosetta and phenix.real_space_refine*.

EMRinger MolProbity®
rRscc*t*  jFsc*™5  Score*

validation validation validation Rotamer Ramachandran Number of residues with
map map map Score Clash score outliers [%) favored [%)] better RSCC'T
TRPV1 0.785 / 0.546 / 1.84 /190 159/ 430/214 0.00/0.00 Q441 /91.72 86/ 250
0.790 0.566 1.48
Frh 0.835/ 0.504 / 1.36 /1.27 168/ 799/366 0687013 9631/ 92.67 677 /1328
0.835 0.517 1.62
Mitoriboscme 0.832 / 0476/ 205/198 188/ 6177408 0.38/0.00 Q0.19 /9349 415 / 564
0.832 0478 1.62

e phenix used 0.24 CPU hours; Rosetta used 5000 CPU hours (5 hrs per
trajectory)



Limitations

* Only looks at applicability to three structures; no wider-scale
evaluation of performance

* Not especially elegant
e Still requires a manually traced model to start from



A Bayesian View on Cryo-
EM Structure Determination

Sjors H. W. Scheres



2D to 3D

* 2D Reconstruction
 Particle Alignment
 Particle Picking
* Clustering

* 3D Reconstruction
* Combine 2D Images
* Back Projection
 Filtering

Cheng, Y., et al. (2015). A primer to single-particle cry—electron microscopy. Cell, 161(3), 438-449.
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Difficulties

* Noise

 Random Orientations

e Potential Bias in Clustering (Chicken and Egg Problem)
e Overfitting



Signal to Noise Ratio (SNR)

Low SNR

High SNR

BACKGROUND NOISE

https://textureoftime.wordpress.com/2016/03/17/dopamine-adhd-and-signal-to-noise-ratio/



Chicken and Egg

Caveat: Model Bias

Align to

Niy (~10% otrast)

25 100 250 1000 2000

Ludtke, S. http://biomachina.org/courses/structures/091.pdf



Overfitting

https://en.wikipedia.org/wiki/Overfitting



Smoothness

* Prevent overfitting of noise
* Limits reconstruction at frequencies where SNR is low
* Implemented through ad hoc filtering procedures



A Statistical Approach

e Old Approach: particle alignment, class averaging, filtering, and 3D
reconstruction

* New Approach: maximize a single probability function

https://en.wikipedia.org/wiki/Bayes%27 theorem



Bayes’ Theorem

P(A)
In: P(B) = ©
P(A) P(BJA) = B/

[ ] P(BJA) X P(A) = I

Out: P(A[B) = /"

P(B)

https://wiki.lesswrong.com/wiki/Bayes' theorem
https://en.wikipedia.org/wiki/Bayes%27_theorem



P(®|X,Y)x P(X|®,Y)P(®Y)

I
P(Xi|$,0,Y) = ] exp
=1 275 N ™S~ péf CTE:X; 4
<|Xij‘CTFij S PﬁVz|2) (nt1) _ Zi =1 f¢ i Z‘=1 ! 2](11) ¢
X 1
_20% Vl
] P 1f¢ F(") 1P¢z; n” do + o

]

N
P(X|0,Y) =[] | P(Xil$,0,Y)P($|0,Y)dd

i=1 Yo

TlZ(n+1 |Vn+1)|2

L 2

1 Vi|

P(OY) 5 €
1Y) E 2mT? xp( 21'1)
of"Y) = / T | X;— CTFl]Z 2V 12de
. (n) (n)
o P(xl9,0"Y)P(s]67,Y)

; 1
" JyP(xi147,0%,Y)P(¢/ |0, Y)do
NOTE: There is a parameter T

Scheres, S. (2012). A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology, 415, 406—418.



Intuition

* Assume noise and signals are both independent and Gaussian
distributed

* Same assumptions as old filters
* Smoothness: limits power at high frequency components
* Prevent overfitting

* Maximize a single probability function



Noise Reduction

Old Method: XMIPP New Method: MAP

Scheres, S. (2012). A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology, 415, 406-418.



Resolution Increased

Noise
MAP
XMIPP
= MAP
7
0 0.05 0.1 0.15 0.2
‘ d* (A

Scheres, S. (2012). A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology, 415, 406-418.



Minority Classes Discovered (K=4)

70s with EF-G 70s with EF-G 70s without EF-G 50s subunit

2023:272 2501:974 364:3180 112:574
21 A 21 A 20 A 30A

Scheres, S. (2012). A Bayesian View on Cryo-EM Structure Determination. Journal of Molecular Biology, 415, 406-418.



Strengths

 Standardizes reconstruction (more objective)

* Takes out most arbitrary decisions

* Focus on one task (probability function) instead of multiple steps
* Allows use of more powerful prior knowledge



Limitations

* Doesn’t completely remove parameters
e Kclassesand T

* Assumes independence of Fourier components and noise
* Didn’t tune parameters for XMIPP



