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The ability to detect, image and localize single molecules

optically with high spatial precision by their fluorescence

enables an emergent class of super-resolution microscopy

methods which have overcome the longstanding diffraction

barrier for far-field light-focusing optics. Achieving spatial

resolutions of 20–40 nm or better in both fixed and living cells,

these methods are currently being established as powerful

tools for minimally-invasive spatiotemporal analysis of

structural details in cellular processes which benefit from

enhanced resolution. Briefly covering the basic principles, this

short review then summarizes key recent developments and

application examples of two-dimensional and three-

dimensional (3D) multi-color techniques and faster time-lapse

schemes. The prospects for quantitative imaging — in terms of

improved ability to correct for dipole-emission-induced

systematic localization errors and to provide accurate counts of

molecular copy numbers within nanoscale cellular domains —

are discussed.
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Introduction
Optical imaging’s most serious drawback — the limited

spatial resolution [1] — has been radically overcome for

the important case of fluorescence with the advent of a

number of methods termed super-resolution (SR) micro-

scopies. Realizing that the molecules which constitute a

labeled structure are themselves nanoscale sources of light

[2–5], the key to rescinding the limiting role of diffraction

in most techniques has been to switch the fluorescence of

molecules residing closely packed within a diffraction-

limited region of the sample on and off, actively control-

ling the emitting concentration at a very low level, and to

localize stochastically available single molecules in a

time-sequential manner [5,6]. Thus, with recordings of

the positions of single molecules (1–2 nm size) as the light

emitters to high spatial precision (10–40 nm), an increase

in resolving power by an order of magnitude and more has
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been demonstrated over the much coarser diffraction-

limited (DL) level of resolution (200–300 nm laterally,

500–700 nm axially) accessible by focusing light through

even the best modern microscope lenses. A separate set of

SR fluorescence methods including stimulated emission

depletion (STED) [7–9], reversible saturable/switchable,

optically linear fluorescence transition (RESOLFT) [10–
12], and (non-linear) structured illumination (SIM) [13–
15] microscopies achieve subdiffraction resolution by

directly reducing the effective microscope point spread

function (PSF) via toggling molecules between fluor-

escent and non-fluorescent states with carefully prepared

beam shapes, often in a laser-scanning setup. This second

set of methods is discussed elsewhere.

Beyond diffraction: nanometer-scale
resolution by precise localization and active
on/off control of single-molecule emitters
The challenge is illustrated in Figure 1. For conventional

imaging, for example in a wide-field epi-fluorescence or

total internal reflection fluorescence (TIRF) system, all

molecules in a certain spatial arrangement (a super-struc-

ture, Figure 1a) are excited and fluoresce simultaneously.

As a result, their diffraction-limited images overlap

seriously on the camera detector. Information about

the underlying super-structure is irretrievably lost

(Figure 1b). If, however, individual sparse subsets of

single molecules that are spatially separated further than

the DL can be made to emit while all others remain dark,

their positions may be extracted in a time-sequential

manner by finding the center of a mathematical descrip-

tion (fit) of the single-molecule image shapes, and a

super-resolution reconstruction may be assembled from

the list of estimated positions (Figure 1c–e). More than

two decades after the first detection of single molecules in

condensed phases [16] and single-molecule imaging [17–
19], sufficient sensitivity to allow imaging of single-mol-

ecule labels (i.e. attaining sufficient signal-to-noise ratio)

remains one essential requirement. The ability to deter-

mine the position of each single molecule from pixelated

recordings [20,21], a process sometimes termed super-

localization, is a second essential requirement. Even at

relatively modest signal to noise, digitizing and fitting of

the single-molecule image (Figure 1f–g) allows the center

(x,y) to be determined much more precisely (Figure 1h)

than the width of the shape, which is the DL PSF. In

situations where a single object is emitting, crucially, this

knowledge then allows one to interpret the center of the

PSF as a measurement of the location of this emitter. It is

worth noting that the above two points taken together do

not lead to super-resolution images without a clever modi-

fication to standard single-molecule imaging.
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Principles of super-resolution single-molecule active control microscopy. (a) A hypothetical arrangement of fluorescent molecules, that is a labeled

‘super-structure’ (here: outline of ‘La Paloma de la Paz’ (The Dove of Peace) by P. Picasso, 1961). (b) In conventional fluorescence microscopy, all

molecules emit simultaneously, so their diffraction-limited images overlap on the detector (camera) and information about the underlying structure is

irretrievably lost. (c) Addition of on-off control, toggling any one single-molecule emitter between a dark and a fluorescent state. (d) If individual sparse

subsets of single molecules that are spatially separated further than the diffraction limit are made to emit, their positions may be extracted in a time-

sequential manner by finding the center position of a mathematical fit of the single-molecule images. (e) From the list of localized molecules, a super-

resolution reconstruction is assembled in a post-processing step. Note that if the majority of molecules is detected at least once, the resolution is then

governed by the fidelity of the localization estimate of individual localizations. This precision is shown by the blue circles which, for reasonable signal-

to-background of single-molecule detection, are dramatically smaller than the extent of the diffraction-limited image given by the microscope PSF.

Scale bar: 250 nm. (f) The pixelated images of single-molecule emissions in a 2D imaging experiment are typically (g) fit by Gaussian functions with

variable center coordinates (x,y) to extract (h) single-molecule position estimates. (i) Illustration of the inherent trade-off between spatial and temporal

resolution when imaging a dynamic process: Cartoon view based on a general membrane fusion scenario, for example SNARE-mediated [87], evolving

from a membrane stalk between a vesicle (top membrane) and the plasma membrane (bottom membrane) to a resulting fusion pore. If temporal

resolution is prioritized, two or more reconstructions can be obtained, however a lower and possibly insufficient number of position samplings in the

reconstructions — possibly also at worse localization precision — leave details unresolved. By contrast, collecting many positions while the structure

is changing leads to time-averaging over the acquisition, and a similar loss of information.

www.sciencedirect.com Current Opinion in Structural Biology 2013, 23:778–787
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For the images not to overlap and thus be identifiable

individually, a sparse turn-on is required by some mech-

anism of ‘active control’, where the experimenter main-

tains a balance of the vast majority of molecules off (dark)

and only a tiny fraction on (fluorescent). The basic

requirement is that single molecules (SMs) disclose their

position by emitting a large number of photons in one go

(a photon burst) before returning to a non-fluorescent

state, so as to enable other molecules in the structure to

enter the signal-giving state and contribute their location

(Figure 1d). The first reports of SM-based SR imaging

achieved this by photo-activation of sparse sets of fluor-

escent proteins followed by their bleaching in (fluor-

escence) photoactivated localization microscopy

((F)PALM) [22,23] or by fast switching of Cy5-Cy3

dye constructs in stochastic optical reconstruction micro-

scopy (STORM) [24]. The same idea was applied to dye

molecules stochastically binding to and unbinding from a

structure, experiencing a dramatic fluorescence enhance-

ment during the binding. The resulting single-molecule

blinks sampled the underlying structure in a method

termed points accumulation for imaging in nanoscale

topography (PAINT) [25]. The light-induced switching

and blinking of many fluorescent proteins [26] provides a

widely applicable alternative — and facilitates the use of

genetically encoded probes [27]. Indeed, long-lived dark

states are common to many fluorophores, which allows

super-resolution microscopy with just one imaging laser

per dye/protein employed, especially when additives are

used to control dark redox state fractions [28–30]. A great

many variants of the same idea have been put forward,

often with their own acronym, but in all cases, the

experimenter must actively select reading intensities,

pumping wavelengths, photochemical mechanism, or

sample additives to control the emitting concentration

at a single-molecule level in each imaging frame. Collec-

tively, these microscope schemes may be referred to, in a

mechanism-independent fashion, as single-molecule

active control microscopy (SMACM).

While a necessary condition, it is important to note that

high spatial precision of individual molecule positions

does not always translate into high spatial resolution. The

average spacing of labels in the super-structure must be

no larger than half the desired resolution to satisfy

Nyquist–Shannon sampling, and if the assumption of a

quasi-static structure is violated — as in time-lapse ima-

ging of more or less dynamic objects — additional

sampling considerations apply, highlighting an inherent

trade-off between spatial and temporal resolution [31].

Such a trade-off is inherent in all imaging but becomes

worth considering especially for the present SR tech-

niques, because the registration of large numbers of

sampled SM positions requires time. While for a static

structure, the acquisition time is less critical (assuming

any sample drift is properly accounted for), for a dynamic

sample, choices have to be made to follow the time-course
Current Opinion in Structural Biology 2013, 23:778–787 
of a structural rearrangement. If SM positions from

shorter time intervals are pooled together to infer a

super-structure in each case, the number of molecules

may be too small to sample sufficiently in space and

spatial resolution is sacrificed. Conversely, if longer time

windows are combined for SR reconstructions, the struc-

tural determination can suffer as an effective time-aver-

age is measured over the time during which the structure

itself evolved, and this is not compensated for by more

molecules recorded (Figure 1i). The goal must be to

increase switching speeds to acquire more positions over

shorter times, and indeed several groups have pushed

SMACM recordings down to the time-scale of order 1–
10 s (Figure 2e–g).

Selected examples of applications
New mechanisms of active control (to keep the majority

of molecules dark in a given imaging frame) have been

explored, and new biological systems are now being

studied at an astonishing pace (see Table 1). Great in-

terest exists in the organization of the cytoskeleton, which

is rather dense in many mammalian cell types. Micro-

tubules have served as test structures in SR demon-

strations for some time due to their piecewise linearity

and well-defined subdiffraction width, but the modeling

and dynamic re-modeling of intricate three-dimensional

microtubular or actin networks [32–34] will be explored

more as methods become faster (see next section on

dynamics).

Bacterial cell and developmental biology can especially

benefit from SR analysis because of the small length scale.

The distribution and organization of DNA in bacterial

cells is an area of particular interest. By fusing EYFP to

the nucleoid-binding protein HU, one can use the inten-

sity-dependent photoinduced blinking and photobleach-

ing of EYFP to extract information about the locations of

relatively nonspecific protein binding sites on the DNA.

This idea was demonstrated for HU-EYFP in fixed Cau-
lobacter crescentus cells (Figure 2a), and the resulting

single-molecule distributions were characterized by

spatial-point statistics to be relatively uniform in the

quiescent parts of the cell cycle, but strongly clumped

in pre-divisional cells [35]. In E. coli in contrast, the H-NS

distribution was strongly clumped for most of the cell

cycle [36]. Other bacterial examples have included the

study of the clustering of chemotaxis proteins in E. coli,
generating a stochastic nucleation model [37], and the

discovery of a �40 nm thick spindle of the protein ParA,

which guides chromosome segregation in C. crescentus [38]

(Figure 2b).

Direct labeling of DNA with a DNA-associating dye,

Picogreen, was recently demonstrated in living mamma-

lian (U2OS) cells under favorable blinking conditions for

the dye [39]. Direct STORM imaging visualized the

eightfold symmetry of gp210 proteins around the nuclear
www.sciencedirect.com
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Figure 2
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Examples of single-molecule-based super-resolution imaging in biological applications. (a) The nucleoid-associated protein HU imaged at different stages in

the cell cycle of asymmetrically dividing C. crescentus bacterial cells, by light-induced blinking of enhanced yellow fluorescent protein fusions. (b) A spindle-

like apparatus of ParA is part of the asymmetric division machinery in C. crescentus bacterial cells. (c) Nuclear pore complexes (gp210 proteins) with eight-fold

symmetrical subunits in isolated Xenopus laevis oocyte nuclear envelopes. (d) Cytosolic nanoscale fibrillar aggregates of mutant huntingtin exon 1 proteins

inside intact neuronal model cells (PC12m). IB: inclusion body. Nu: nucleus (e) tdEos-tagged focal adhesion molecules (paxillin) imaged in 2D at 55-s time

resolution in a live CHO cell. (f) Endoplasmic reticulum (ER) dynamics in live BS-C-1 cells. (left) A time-series of 10-sec STORM snapshots. Blue arrowheads:

Tips of extending tubules. (middle) A composite image containing all these snapshots with each localization colored by its time of appearance according to the

shown color map. (right) Distribution of the widths of ER tubules. Green bars: Newly extended tubules. Red bars: Old tubules that had already existed for at

least 2 min. (g) Voltage-gated ion channels recognized by fluorescently-labeled saxitoxin ligands, imaged at 6 s/reconstruction. Spines are constantly

extending and retracting from the extended neuritic process in the neuronal model cell PC12. Scale bars as noted and 1000 nm (b, c left), 500 nm (e, f), 250 nm

(c top right), 150 nm (c bottom right (C–E)). Examples reproduced with permission from [35] (a), [38] (b), [40] (c), [44�] (d), [31] (e), [51] (f), [46] (g).

www.sciencedirect.com Current Opinion in Structural Biology 2013, 23:778–787
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Table 1

Selected structural biological measurements by single-molecule-based super-resolution approaches

Biological super-structure(s) Significance/comments Ref

Integrin-based focal adhesions Integrins and actin are vertically separated by a �40-nm focal adhesion

core region consisting of multiple protein-specific strata including

integrin; talin, a further component, has polarized orientation, indicating a

role in organizing the focal adhesion strata

[90]

MreB, CreS, PopZ, FtsZ in C. crescentus Cytoskeletal and polar as well as midplane-located protein

superstructures in live bacteria

[27,88,89,91]

Aggregates of mutant huntingtin

exon 1 protein

Fibrillar aggregates, possibly transient protofibrils, with a sharp cut-off

length of �1.5 mm observed to co-exist with mature inclusion bodies

[43,44�]

Cycling nitro-reductase Visualization in live B. subtilis [45]

Sodium channels in live neuronal model

cells by fluorescent saxitoxin

Novel labeling by de novo synthesis of fluorescent forms of saxitoxin, fast

(<10 s) dynamics of neuritic spine movements

[46]

Nucleosome-binding protein HU

in live C. crescentus

Spatial point statistics analysis (2D) of chromosomal DNA [35]

ParA/ParB in live C. crescentus Division spindle components for chromosome segregation [38]

Chemotaxis network in E. coli New model triggered for localization patterns [37]

Actin and spectrin Highly periodic protein arrangements in axons [33,34]

Synaptic proteins Bassoon and Homer1 Organization of key proteins at the synapse in brain tissue [92]

Spine and excitatory synapse density

in the hippocampus (bassoon and

glutamate receptor 1/2)

Afadin, a Ras/Rap effector, is a key intracellular signaling molecule for

cadherin recruitment and is necessary for spine and synapse

formation in vivo

[93]

Podosome formation and dissociation Visualized using an mCherry-tagged truncated talin construct (live cell) [81]

DNA Direct dye labeling [39]

Various organelles Live cell, high temporal sampling using membrane probes (1–2 s/SR

reconstruction)

[51]

Proteins central to centrosome formation The carboxy terminus of pericentrin-like protein (PLP) is revealed to be at

the centriole wall, radiating outwards into a matrix domain where it is

organized into clusters having quasi-nine-fold symmetry

[94]
pore complex and resolved the central channel with

�15 nm resolution [40] (Figure 2c).

The aggregation of misfolded proteins in neurodegen-

erative disorders can be studied at high resolution in

experimental systems relevant to Alzheimer’s [41], Par-

kinson’s [42] or Huntington’s diseases, both in vitro and

inside cellular models [43,44�] (Figure 2d).

An alternative strategy to ‘turn-on’ fluorophores for SR

imaging can be provided by enzymatic generation of

fluorophores, where the catalytic reaction converts a dark

fluorogen into a good emitter. The concentration can be

kept low in any imaging frame by a combination of

limiting the concentration of fluorogenic substrate and

high reading intensity to photobleach emitters before

diffusion can occur. This concept was recently demon-

strated in Bacillus subtilis using a neutral, cell-penetrating

fluorogenic nitro-DCDHF dye which is converted to a

hydroxyl-amino derivative by native nitroreductase [45].

A large class of cellular labels can be contemplated based

on fluorescent ligands which bind to cell-surface recep-

tors. As an example, Ondrus and Lee et al. prepared a

fluorescently-labeled saxitoxin molecule which is known

to block voltage-gated sodium (NaV) channels. When

PC12 cells are incubated with medium-nM concen-

trations of the labeled ligand, molecules free in solution

diffuse so fast that they only produce an increased
Current Opinion in Structural Biology 2013, 23:778–787 
background on the imaging detector. However, when

the molecules bind to the NaV channels in the cell

membrane, the emission from each single molecule

appears as a single spot which can be localized to high

precision and quickly photobleached. This type of target-

specific PAINT imaging provides samples of the NaV

channel locations on the living cell surface [46]

(Figure 2g).

Dynamics: time-lapse imaging in organelles,
protein complexes and beyond
One exciting aspect of the schemes discussed here is that

a far-field fluorescence microscope is inherently compa-

tible with time-lapse investigations of biological pro-

cesses. Much initial work focused on the tracking of

individual molecules in cellular membranes or the cyto-

sol at higher and higher spatial and temporal levels [47–
49] or to unravel the dynamics of single copies of mol-

ecular machines by attaching larger labels and ultimately

single molecules. But super-resolution microscopy

allows much denser structures to be interrogated over

time [50]. Photoswitchable membrane-bound small-mol-

ecule probes have enabled live-cell imaging at exquisite

spatial and temporal resolution (30–60 nm and 1–2 s) [51]

(Figure 2f).

The third dimension: super-resolution in 3D
Life happens in three dimensions, and organelles, cells

and tissues are intricately organized in three dimensions
www.sciencedirect.com



Fluorescence imaging Sahl and Moerner 783

Figure 3
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8

Three-dimensional (3D) super-resolution fluorescence imaging. (a) To extract the location of individual single-molecule emitters with high precision in all

three spatial dimensions, the symmetry of the standard microscope PSF (i) must be broken and the PSF re-designed to encode information in the z (axial)

direction by a well-defined shape change. Widely adopted schemes include: (ii) an astigmatic PSF, where the slowly changing ellipticity of the single-

molecule image can be calibrated to provide a z estimate. (iii) the double-helix (DH) PSF features two well-defined spots revolving around a common center

as a function of z. (iv) cork screw PSF (one revolving spot), (v) bi-plane methods assess the relative detected brightness of images formed in two shifted

image planes. (vi) 4Pi axial localization methods rely on interferometric detection and two matched objective lenses to collect fluorescence from both sides

of the sample. (b) Microtubules in mammalian cells extending over a large axial range can be readily imaged with the DH-PSF. (c) Visualization of the

cytoskeletal protein filament of CreS in pre-divisional C. crescentus bacterial cells, jointly with the cell surface by the PAINT approach. (d) Quantitative co-

localization of a further protein, PopZ (shown in red). The number density of PopZ in the polar nano-domains was demonstrated to be constant between

cells. Both (c) and (d) recorded by DH-PSF microscopy. (e) Cell-wide arrangement of F-actin by dual-objective astigmatic imaging. Scale bars/grids:

2000 nm (b, e left), 1000 nm (c, d), 500 nm (e right). Examples reproduced with permission from [32] (b), [88] (c), [89] (d), [33] (e).
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(3D). The constituent proteins, lipids and other macro-

molecules interact on various timescales. SR imaging in

3D is challenged by the standard fluorescence micro-

scope’s PSF, which contains little information about

the axial (z) position of a single emitter. The standard

PSF (Figure 3a, left) is highly symmetric axially about the

focal plane and changes very little over hundreds of

nanometers near it. Because an objective can only pro-

duce a spherical cap of a wavefront of light, the PSF

inherently is always larger axially than laterally [52]. This

may be addressed by using interferometric approaches

with two opposing objective lenses [53], which yield very

high axial localization precision [54–56]. The instrumen-

tal requirements are considerable and the need for high

numerical aperture (NA) objective lenses on both sides of

the sample may be impractical to implement for some

applications. In comparison, single-lens epi-fluorescence

wide-field microscopy is widely utilized in biology, and

several approaches have been described for 3D high-

precision imaging, including astigmatism [57,58], multi-

plane [59,60], and the double-helix PSF (DH-PSF) [61]

(all in Figure 3a). In the DH-PSF microscope, the PSF

response features two prominent spots that revolve

around their common midpoint throughout the depth

of field, thus appearing as a double helix axially. Unlike

other PSF schemes that only moderately evolve with z
position, the DH-PSF microscope exhibits highly

uniform nanoscale localization precision along an axial

range of �2–3 mm, which is predicted by information-

theoretical calculations [62] and has been demonstrated

experimentally [63]. In contrast, methods based on astig-

matism [57] and biplane [60] improve the axial localiz-

ation precision over smaller z ranges [62]. An intriguing

alternative of a rotating PSF that can facilitate nanoscale

localization over a large axial range is the corkscrew PSF

(CS-PSF) [64]. 3D SR schemes have been applied to the

structural analysis of cytoskeleton proteins in both

mammalian and bacterial systems (examples in

Figure 3b–e).

Toward counting numbers of molecules in
protein super-structures
With imaging of biological structures entering a new era

based on single-molecule imaging, it should be possible

to arrive at a much more quantitative picture of the

numbers of molecules involved in forming molecular

assemblies. However, several critical issues must be

addressed in dealing with stochastic single-molecule

active control and detection. For example, when trying

to assess the number (rather than primarily the positions)

of proteins in a DL region with photoactivatable fluor-

escent proteins, if photoactivation is irreversible, the

number of fluorescent bursts should in principle be a

measure of the number of proteins. In practice however,

two sources of error play a role. Intrinsic photoblinking

leads to an overcounting error [65], while the inevitable

simultaneous activation (in some cases) of multiple
Current Opinion in Structural Biology 2013, 23:778–787 
molecules within one DL region can result in molecular

undercounting. A specific photoactivation scheme and

careful kinetic modeling are needed to balance over-

counting and undercounting, as shown by Lee, Shin

et al. [66��]. Their work also clearly points to the need

to choose and characterize the photoactivatable fluor-

escent protein to be employed carefully, in their case

identifying Dendra2 as superior to mEos2 for this count-

ing application (due to faster bleaching and much less

blinking).

True position estimates — unbiased by non-
isotropic single-molecule fluorescence
emission
As the field pushes to higher spatial precision by virtue

of higher number of photons collected, more infor-

mation-efficient estimators and optimal detection

schemes [67], it becomes apparent that one further

fundamental aspect has to be considered. For even

partially immobile transition dipoles, anisotropic

single-molecule emission patterns arise that depend

strongly on 3D orientation and z position. Image fitting

that fails to account for this may incur a sizable sys-

tematic error (mislocalization) of up to �50–200 nm

that can degrade resolution [68]. Backlund, Lew

et al. recently showed that the DH-PSF uniquely con-

tains parameters in its two lobes which make it possible

to extract estimates of both 3D position and orientation

of a single molecule. Building a library of the apparent

shift as a function of position and orientation, this shift

can be subtracted and the error thus corrected, making

the (x, y, z) determination not only precise but also

accurate [69��]. Furthermore, in actual experiments, the

degree of mislocalization depends strongly on the

rotational mobility of the single-molecule labels; only

for molecules rotating within a cone half angle a > 608
can mislocalization errors be bounded to �10 nm. Both

low and high rotational/orientational mobility can cause

resolution degradation or distortion in super-resolution

reconstructions, depending on geometrical details of

the structure interrogated [70�].

Conclusions
The resolution gap of fluorescence-based imaging com-

pared to electron microscopy is rapidly closing. Super-

resolution microcopy based on the sequential localiz-

ation of single molecules will be developed further to

become a unique 3D tool for dynamics, maintaining the

key advantage of high molecular specificity and mini-

mal invasiveness. The labor-intensive sample prep-

aration of electron microscopy in particular can be

avoided, circumventing drawbacks like the low labeling

efficiency of gold immunofluorescence, and the fre-

quent need to impose symmetry conditions in the

analysis. Further improvements will chiefly come from

dedicated development efforts in single-molecule

probes, notably in two ways. Firstly, increases in probe
www.sciencedirect.com
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photostability (increased detected photons) will

directly translate to higher precisions and thus resol-

ution potential [71]. Secondly, it is worth noting that

the achievable resolution approaches the size of the

fluorescent labels themselves, making labeling density

a crucial consideration — and a tunable parameter — to

avoid crowding and obscuring of the underlying spatial

arrangements interrogated [72]. Novel small, compact

labels such as aptamers [73] and nanobodies [74] will

have to displace indirect immuno-staining, as primary

and secondary antibodies each occupy non-negligible

volumes in the labeled structure. Current research has

focused on finding parameters and harnessing new

technologies for faster imaging [75,76�]. The number

of suitable and spectrally distinct labels needs to be

further expanded [77,78], and dyes and fluorescent

proteins carefully characterized. The described

methods rely on detection of single molecules at suffi-

cient signal-to-background. In thick cells or tissue slices

optical sectioning must be provided by selective acti-

vation and/or excitation of distinct planes in the sample

[58,79].

Current research seeks to identify ways to extract the

maximum information from SM images, and to find

algorithms which can handle multiple active, partially

overlapping fluorophores per frame, such as DAO-

STORM [80], Bayesian analysis [81], compressed sen-

sing [82], and others. Further analysis tools need to be

developed to disentangle structure from the inherently

pointillist description in a SMACM experiment and

detect, for example, true clustering [83]. SR methods

combined with ingenuity of labeling approaches

will impact research areas as diverse as genetic

engineering and systems biology [84] or biofilm assem-

bly [85,86].
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