Structure-based prediction of protein-protein interactions on a genome-wide scale.

Qiangfeng Cliff Zhang, Donald Petrey, Lei Deng

Structure-based prediction

of protein-protein

interactions on a

genome-wide scale.

Qiangfeng Cliff Zhang, Donald Petrey, Lei Deng

How do we know what we know?

How do we know what we know?

High throughput

techniques

How do we know what we know?

High throughput

techniques

Computational methods based on non-structural evidence

Structure-based prediction

of protein-protein interactions on a genome-wide scale.

Qiangfeng Cliff Zhang

Structure-based pre

of protein-protein

Homology Models

interactions on a genome-wide scale.

Qiangfeng Cliff Zhang

Structure-based pre of protein-protein interactions on a genome-wide scale.

Homology Models

Structural Neighbors

Qiangfeng Cliff Zhang

Sequence Alignment

Sequence Alignment

Homology Models

Structural Neighbors

Structural Alignment

Structural Neighbors

Structural Alignment

Structural information + Non-structural information

How good is it?

How good is it?

How good is it?

Panorama of ancient metazoan macromolecular complexes

A paper with two primary authors and too many others to list

Who should care?

folks who want to understand cellular processes

Methods

Experimental

- · Co-fractionation
- Mass Spectrometry
- stuff out of presentation scope

Computational

- Mapping
- Machine Learning
- · Graph Clustering
- · Enrichment Analysis
- stuff out of presentation scope

10,000ft Objective

- Describe extent of PPI network conservation
- Identify conserved PPI networks
- Characterize conserved PPI networks

10,000ft Objective

- Describe extent of PPI network conservation
- Identify conserved PPI networks
- Characterize conserved PPI networks

Methods: Overview

Population

Population

Training

Data Acquisition

Data Analysis

The data analysis is the hard part.

Naturally that's what we're gonna focus on.

Basis for Comparison

Have

- Interspecies PPI pairs

Want

- Comparable PPI pairs

Solutions

- PPI pairs over orthogroups
- PPI pairs normalized to a single species
- ???

Basis for Comparison

Have

- Interspecies PPI pairs

Want

- Comparable PPI pairs

Solutions

- PPI pairs over orthogroups
- PPI pairs normalized to a single species (human)

arbitrary

Pause for a thought

Have

- Comparable PPI pairs w/ co-fractionation data

Want

- Real PPI networks

A Solution

- Score PPI pairs for being co-complex
 - Informed by gold-standard adjacencies
- Transform PPI pairs into a global adjacency network
- Split out subnetworks from global PPI network
 - Tuned for meaningful PPI networks

example of a 'clustering'

probably want something like this

We now return to your scheduled programming

Gluing together a data pipeline

- Generate features
 - Co-fractionation correlation measures
 - Interaction data from databases, literature
- ML co-complex +/against CORUM
- Network clustering w/ ClusterOne, MCL

Characterization of Clusters

Have

 PPI networks embedded in global network

Want

 Biologically relevant and 'interesting' features

A Solution

 Enrichment analysis for higher-order attributes

Smattering of Results

found many neglected proteins/PPIs of interest

green links are novel co-complex interactions

red dots are unannotated proteins

Smattering of Results

directly demonstrated utility of approach

Things I wish the authors mentioned

- Were multiple co-fractionation correlation measures really necessary? Which features were relevant?
- Did they account for the false-discovery rate of clusters?
- Was there a specific reason for choosing humans as the ortholog basis? How much do results change when using a different species?

Final Comments

The candy is a lie