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A few logistical items



Reminders

* Monday, Jan. 16: Guest lecture by Eli Groban
(Autodesk) on virtual reality for biomolecules

— Completely optional (MLK day).

— Bring a smart phone (Android or iPhone) if you have
one
* Please fill out preference forms by Tuesday, Jan. 17
— Presentations: https://goo.gl/forms/G1ZArNmkpiXXq1US3
— Critiques: https://goo.gl/forms/fEIPmibENnZfk7s262

— If you're not sure by then whether you're taking the class,
indicate that in the “Additional notes” field

 Still taking volunteers for Jan. 25 presentations
(“Modern Protein Design™)




Critiques

Each critique should be submitted (through
Canvas) before the beginning of the class during
which the paper is being presented

We’'ll assign each student two papers to critique,
based on their submitted preferences.

— The third can be on any of the "Main Papers” listed at
http://cs371.stanford.edu/schedule.html, but you need
to present on one topic and critique three others

We've posted sample critiques on the web site
Critiques should typically be 2—3 pages long.

— If you prefer, you can substitute two one-page critiques
(on two different papers) for one “regular” critique.




Overview

* Molecular dynamics (MD) simulations predict the
atomic-level motions of molecules

* These simulations have been around for decades, but
they’'ve become much more powerful recently, thanks to
faster computers, better algorithms, and better models
of the underlying physics

— First paper illustrates application of modern MD to a problem
of interest in drug discovery

 MD simulations generate a lot of data, and extracting all
the important information from that data is challenging

— Second paper presents a statistical method for detecting
important “events” in MD simulations



Background:
Molecular dynamics (MD) simulations



An MD simulation computes the motion of
every atom in a molecular system

Water

Cell membrane (lipids)

Protein




Molecular Dynamics

Divide time into discrete time steps
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~2 fs time step




Molecular Dynamics

Calculate forces exerted by atoms
on one another

Molecular mechanics
force field




Molecular Dynamics

Move atoms




Molecular Dynamics

Move atoms
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Molecular Dynamics

lterate

... and iterate

... and iterate

Integrate Newton’s
laws of motion




MD simulations are slow,
but they've sped up substantially

Simulations require short time steps for numerical stability
— 1 time step =2 fs (2x107"° s)
Structural changes in proteins can take nanoseconds (107 s),

microseconds (10 s) milliseconds (10 s) or longer

— Millions to trillions of sequential time steps for nanosecond to
millisecond events

Until recently, simulations of 1 microsecond were rare

Advances in computer power have enabled microsecond
simulations (and even millisecond simulations in special cases)

Enabling longer simulations is an active research area, involving:
— Algorithmic improvements
— Parallel computing

— Hardware: GPUs, specialized hardware -



MD simulations are approximate,
but they've become more accurate

* Molecular mechanics force fields (the functional
forms used to compute forces on atoms) are
inherently approximations

* They have improved substantially over the last

decade, though many

6

Force field score
w [6)]

-
1

o

CHARMM22
=1 @

N
|

N
1

OPLS-AA ff03
[ [ J
CHARMM27
]
ff03*
®
ffO9SB-ILDN

@
CHARMM22*
ffO9SB*-ILDN 3

1 1 1 1 1 1
1998 2000 2002 2004 2006 2008 2010 2012
Year of publication

Imitations remain

Here force fields with lower scores
are better, as assessed by
agreement between simulations
and experimental data. Even the
force fields with scores of zero are
imperfect, however!

Lindorff-Larsen et al., PLOS One, 2012 14



An application of MD simulation:

“Structural basis for modulation of a G-protein-

coupled receptor by allosteric drugs”
Dror et al., Nature 503: 295-299 (2013)



G protein—coupled receptor (GPCR) signaling
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Spontaneous drug binding in simulation

0.00 us

Beta-blocker alprenolol binding to the (3,-adrenergic receptor
Dror et al., PNAS 2011



Final pose matches experimental structure

Final pose in simulation

Crystal structure
(Wacker et al., JACS 2010)




Allosteric drugs

Classical binding pocket , ,
(orthosteric site)  Allosteric modulators bind

| anywhere but the orthosteric site
» Allosteric modulators promise:

« Selectivity between GPCR subtypes
* Fine control of responses to body’s
natural signaling patterns
* Until recently, not clear how such
modulators bind, and even less
clear how they exert their effects




0.00 us

Allosteric modulator binding to
muscarinic acetylcholine receptor
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C-/3-phth binding to
M2 muscarinic receptor

Dror et al., Nature 2013



Bound pose agrees with mutagenesis data

O Residues whose mutation caused >5-fold loss of
affinity for bis-amino alkane ligands



Apply the same methodology to structurally

diverse allosteric modulators ...
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Structurally diverse allosteric modulators
share a common binding mode
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« These binding modes are different from those predicted previously



Experimental validation of new predictions

Mutagenesis predictions

Increase affinity Increase affinity Decrease affinity
Increased cation—Tr interactions Charge—charge attraction Charge—charge repulsion
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What is the basis of allosteric modulation?

* |n simulation, as in experiment, allosteric ligands
modulate affinity of orthosteric ligands.

— C./3-phth, a negative allosteric modulator (NAM),
lowers affinity of the classical antagonist NMS

No ligand in orthosteric site NMS in orthosteric site

Time (us) Time (us)

B Allosteric ligand tightly bound
™ Allosteric ligand loosely bound
Allosteric ligand not bound Dror et al.. Nature 2013



Allostery Is symmetric
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Mechanism 1: Electrostatic interaction
between ligands

» Positively charged allosteric ligand repels
positively charged orthosteric ligand

C./3-phth Alcuronium

Difference in electrostatic
potential due to addition of NMS




No orthosteric

ligand

Mechanism 2: Coupled conformational
change of orthosteric and allosteric sites

No allosteric ligand C./3-phth Alcuronium
(negative modulator) (positive modulator)

NMS




Designing an allosteric modulator

* Prediction: Computationally designed modulator 4P-
C-/3-phth binds like C-,/3-phth but forces open allosteric

site, making cooperativity more positive (less negative)
C,/3-phth 4P-C,/3-phth

 Experimental validation:
4P-C-/3-phth has less

negative cooperativity than
C-/3-phth despite binding
more tightly

Log(cooperativity)

| C./3-phth 4P- Alcuronium



Limitations of study

« Computational:

— We didn’t explicitly compute cooperativity between
allosteric and orthosteric ligands

— We have good evidence for negative cooperativity
between the allosteric modulator C-/3-phth and the

orthosteric ligand, but weaker evidence for
cooperativity of most other allosteric modulators

* Experimental:

— We didn’t perform experimental validation of the
electrostatic mechanism

— We didn’t solve a crystal structure with one of these
modulators bound

30



Limitations of study

* The big one (in my opinion):
We did not study allosteric modulation of
acetylcholine, the neurotransmitter that is the
natural ligand for this receptor

When developing an allosteric modulator as a drug,
you generally care most about cooperativity with the
natural ligand

Acetylcholine is an agonist: it favors activation of the
receptor

But we had only an inactive-state structure of the
receptor, not an active-state structure

So instead, we studied modulation of NMS, which
does not favor activation 31



Analysis of simulation data:

“Identifying localized changes in large systems:

change-point detection for biomolecular simulations”
Fan et al., PNAS 112:7454—7459 (2015)



The challenge

MD simulations generate a lot of data
— Example: simulate a 50,000-atom system for 1 ys
— That’s half a billion time steps

— The simulation calculates the position and velocity of every atom
at every time step

— One doesn’t usually save to disk at every time step, but there’s
still a ot of data to examine
Sometimes one knows precisely what to look for

In other cases—particularly when using simulations to

understand functional mechanisms—extracting meaningful
information from simulations involves protracted visual and
manual analysis (i.e., staring at the results for a long time)

Can we automate this process?

33



An example: using simulation to understand the
mechanism of GPCR activation

Simulation vs.
Inactive crystal
structure

Simulation of 3,-adrenergic receptor transitioning spontaneously
from its active state to its inactive state

Rosenbaum et al., Nature 2010; Dror et al., PNAS 2011



After months of staring at simulation results:
There are three key, “loosely connected” regions;
each adopts multiple conformational states

Helix 5 displacement away from helix 7
inactive structure

active structure
8 Helix 5—agonist distance
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What are the “important events™?

They usually involve conformational (that is,
structural) changes

These changes can be subtle: they might involve
only a very small part of the protein

The protein is moving constantly
We tend to care most about rare changes

36



Can we approach this as a
changepoint detection problem?

2% of time series | Challenge:

Each
change
affects only
a few of the
thousands
of time
series that
describe a
simulation
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Detection of simultaneous change points

* Approach this as a statistical change-point
detection problem, but:

— Determine both change times and the observables that
change at each time

— Search, in particular, for simultaneous changes of
multiple observables

* We can formulate this as a giant optimization
problem
— We can solve this problem efficiently by iterative

application of recently introduced dynamic
programming algorithms




Simultaneous changepoint detection:
A simple example

Four sample time series (of

...................................................................................

hundreds/thousands), each
corresponding to the

distance between a pair of

w W A

protein atoms in a
simulation

Distance between pair of atoms (A)

0.0 0.6 1.2 1.8 2.4 3.0



Simultaneous changepoint detection:
A simple example

Wish to choose a small set
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Distance between pair of atoms (A)
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Solve a big optimization
problem to determine when
changes occur, which
observables they affect, and
how the statistics of those
observables change (i.e., what
parts of the protein change at
what times, and how).
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Distance between pair of atoms (A)

Our approach
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Choose changepoints, and
model parameters for each
segment, to maximize:

[Likelihood of data given
model] — [Penalty function]

where the penalty function
increases with the number of
changepoints, but less so if
multiple changepoints are
simultaneous (especially if the
atoms involved are nearby one
another).



A

Distances (A)

Our approach: Simultaneous penalized likelihood
estimation (SIMPLE) change point detection

Candidate change points B Data likelihood given change points
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Detected change points in WW domain
folding simulation
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Detected change points in
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Number of true changes not detected

Performance comparison

(on synthetic data for which we know the true change times)
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Limitations of the study

Basic problem definition: is one always looking
for “sudden” changes of this sort?

No guarantee that optimization algorithm will
converge to global optimum

Lack of good software for visualizing the results
— We actually developed (and released) such software,
but its portability is poor

Although the paper describes a general method,
it doesn’t demonstrate application of the method
to other types of data
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Supplemental slides



Problem formulation as optimization

K
e Laplace likelihood p(x|u, v) = 2—1ve_ v

— Detect changes in median and mean absolute deviation
— More robust than Gaussian likelihood
— Computationally tractable (pay logarithmic factor)
— Invariant to location and scale of data
* Sub-additive penalty: g(S; U S,) < q(S;) + q(S,)

— Preference for grouping changes into shared change times

— Couples time series into a single optimization problem



Theoretical consistency guarantee

In the limit of increasing amount of data
between changes,

P(global max gives correct changes) — 1,

assuming:

— Medians and/or mean absolute deviations of data
distributions change

— Data distributions have sub-exponential tails
— Sub-additive penalty function q
— Penalty function scales as 0(log T?) < q < O(T)



Algorithmic approach

*s Algorithm for maximizing objective function
involves:

— lterative refinement of change times and changes per
time series

— Pruned dynamic programming algorithm for single
time series (Killick, Fearnhead, Eckley 2012)

* Typical-case runtime O(JT log T) for J time
series, T frames per time series

e Parallelizable across the | time series (garden
implementation uses MPI)



