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A few logistical items



Reminders

• Monday, Jan. 16: Guest lecture by Eli Groban 
(Autodesk) on virtual reality for biomolecules 
– Completely optional (MLK day). 
– Bring a smart phone (Android or iPhone) if you have 

one 
• Please fill out preference forms by Tuesday, Jan. 17 

– Presentations: https://goo.gl/forms/G1ZArNmkpiXXq1U53 
– Critiques: https://goo.gl/forms/fEIPmibEnZfk7s262 
– If you’re not sure by then whether you’re taking the class, 

indicate that in the “Additional notes” field 
• Still taking volunteers for Jan. 25 presentations 

(“Modern Protein Design”)



Critiques

• Each critique should be submitted (through 
Canvas) before the beginning of the class during 
which the paper is being presented 

• We’ll assign each student two papers to critique, 
based on their submitted preferences.   
– The third can be on any of the “Main Papers” listed at 

http://cs371.stanford.edu/schedule.html, but you need 
to present on one topic and critique three others 

• We’ve posted sample critiques on the web site 
• Critiques should typically be 2–3 pages long.   

– If you prefer, you can substitute two one-page critiques 
(on two different papers) for one “regular” critique.



Overview

• Molecular dynamics (MD) simulations predict the 
atomic-level motions of molecules 
!

• These simulations have been around for decades, but 
they’ve become much more powerful recently, thanks to 
faster computers, better algorithms, and better models 
of the underlying physics 
– First paper illustrates application of modern MD to a problem 

of interest in drug discovery 

• MD simulations generate a lot of data, and extracting all 
the important information from that data is challenging 
– Second paper presents a statistical method for detecting 

important “events” in MD simulations 5



Background: 
Molecular dynamics (MD) simulations



An	MD	simulation	computes	the	motion	of	
every	atom	in	a	molecular	system

Water

Protein

Cell	membrane	(lipids)

For	example,	a	protein	and	its	surroundings



  Molecular Dynamics

 

t

Divide time into discrete time steps

~2 fs time step
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  Molecular Dynamics

!
  Calculate forces exerted by atoms 

on one another

Molecular mechanics 
force field
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  Molecular Dynamics

!
  Move atoms
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  Molecular Dynamics

!
  Move atoms

       ... a little bit
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   Molecular Dynamics

IterateIterate

Iterate... and iterate

Iterate... and iterate

Integrate Newton’s 
                 laws of motion

12



MD simulations are slow,  
but they’ve sped up substantially

• Simulations require short time steps for numerical stability 
– 1 time step ≈ 2 fs (2×10–15 s) 

• Structural changes in proteins can take nanoseconds (10–9 s), 
microseconds (10–6 s), milliseconds (10–3 s), or longer 
– Millions to trillions of sequential time steps for nanosecond to 

millisecond events 
• Until recently, simulations of 1 microsecond were rare 
• Advances in computer power have enabled microsecond 

simulations (and even millisecond simulations in special cases) 
• Enabling longer simulations is an active research area, involving: 

– Algorithmic improvements 
– Parallel computing 
– Hardware: GPUs, specialized hardware 13



MD simulations are approximate,  
but they’ve become more accurate

• Molecular mechanics force fields (the functional 
forms used to compute forces on atoms) are 
inherently approximations 

• They have improved substantially over the last 
decade, though many limitations remain

14

Here	force	fields	with	lower	scores	
are	better,	as	assessed	by	
agreement	between	simulations	
and	experimental	data.		Even	the	
force	fields	with	scores	of	zero	are	
imperfect,	however!	
!
Lindorff-Larsen	et	al.,	PLOS	One,	2012



An application of MD simulation: 
!

“Structural basis for modulation of a G-protein-
coupled receptor by allosteric drugs” 

Dror et al., Nature 503: 295–299 (2013)



Membrane

Binding

GPCR

Activation

G protein–coupled receptor (GPCR) signaling

G	protein	
coupling

G	protein



Spontaneous drug binding in simulation

Beta-blocker alprenolol binding to the β2-adrenergic receptor
Dror et al., PNAS 2011



Final pose matches experimental structure

Final pose in simulation

Crystal structure  
(Wacker et al., JACS  2010)



Allosteric drugs

• Allosteric modulators bind 
anywhere but the orthosteric site 

• Allosteric modulators promise: 
• Selectivity between GPCR subtypes 
• Fine control of responses to body’s 

natural signaling patterns 
• Until recently, not clear how such 

modulators bind, and even less 
clear how they exert their effects

Classical binding pocket 
(orthosteric site)



Allosteric modulator binding to  
muscarinic acetylcholine receptor

C7/3-phth binding to  
M2 muscarinic receptor

Dror et al., Nature 2013



Bound pose agrees with mutagenesis data

Residues whose mutation caused >5-fold loss of 
affinity for bis-amino alkane ligands



Apply the same methodology to structurally 
diverse allosteric modulators ...

StrychnineAlcuronium Gallamine

Dimethyl-W84C7/3-phth



Structurally diverse allosteric modulators 
share a common binding mode 

• Each modulator binds with a positively charged nitrogen in one or 
or both of two positions 

• These binding modes are different from those predicted previously

Y177

W422

Y83

Y80
T423

N+ 
Center	

2

Cation–π interactions

N419

C7/3-phth	
Gallamine	
Dimethyl-W84

Alcuronium	
Strychnine

N+ Center 2N+ Center 1

ECL2

H2

H6
H5

H7

ECL1

ECL2

N+	
Center	

1

H2

H7



Mutagenesis results (Christopoulos lab, Monash University)

Experimental validation of new predictions
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What is the basis of allosteric modulation? 

• In simulation, as in experiment, allosteric ligands 
modulate affinity of orthosteric ligands. 
– C7/3-phth, a negative allosteric modulator (NAM), 

lowers affinity of the classical antagonist NMS

Allosteric ligand tightly bound
Allosteric ligand loosely bound
Allosteric ligand not bound

No ligand in orthosteric site NMS in orthosteric site

Dror et al., Nature 2013



Allostery is symmetric

ΔGA→AB − ΔG0→B = ΔGB→AB − ΔG0→A

Difference in binding energy of A with or without B bound equals 
difference in binding energy of B with or without A bound

Figure	credit:		
Sam	Hertig



Mechanism 1: Electrostatic interaction 
between ligands

• Positively charged allosteric ligand repels 
positively charged orthosteric ligand

C7/3-phth Alcuronium

0.0 
kBT/e

3.0 
kBT/e

Difference in electrostatic 
potential due to addition of NMS

NMS



Mechanism 2: Coupled conformational 
change of orthosteric and allosteric sites
No allosteric ligand
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Designing an allosteric modulator
• Prediction: Computationally designed modulator 4P-

C7/3-phth binds like C7/3-phth but forces open allosteric 
site, making cooperativity more positive (less negative)

C7/3-phth 4P-C7/3-phth

• Experimental validation: 
4P-C7/3-phth has less 
negative cooperativity than 
C7/3-phth despite binding 
more tightly
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Limitations of study

• Computational: 
– We didn’t explicitly compute cooperativity between 

allosteric and orthosteric ligands 
– We have good evidence for negative cooperativity 

between the allosteric modulator C7/3-phth and the 
orthosteric ligand, but weaker evidence for 
cooperativity of most other allosteric modulators 

• Experimental: 
– We didn’t perform experimental validation of the 

electrostatic mechanism  
– We didn’t solve a crystal structure with one of these 

modulators bound
30



Limitations of study

• The big one (in my opinion):   
We did not study allosteric modulation of 
acetylcholine, the neurotransmitter that is the 
natural ligand for this receptor 
– When developing an allosteric modulator as a drug, 

you generally care most about cooperativity with the 
natural ligand 

– Acetylcholine is an agonist: it favors activation of the 
receptor 

– But we had only an inactive-state structure of the 
receptor, not an active-state structure 

– So instead, we studied modulation of NMS, which 
does not favor activation 31



Analysis of simulation data: 
!

“Identifying localized changes in large systems: 
change-point detection for biomolecular simulations” 

Fan et al., PNAS 112:7454–7459 (2015)



The challenge

• MD simulations generate a lot of data 
– Example:  simulate a 50,000-atom system for 1 µs 
– That’s half a billion time steps 
– The simulation calculates the position and velocity of every atom 

at every time step  
– One doesn’t usually save to disk at every time step, but there’s 

still a lot of data to examine 
• Sometimes one knows precisely what to look for 
• In other cases—particularly when using simulations to 

understand functional mechanisms—extracting meaningful 
information from simulations involves protracted visual and 
manual analysis (i.e., staring at the results for a long time) 

• Can we automate this process?
33



An example: using simulation to understand the 
mechanism of GPCR activation

Simulation of β2-adrenergic receptor transitioning spontaneously 
from its active state to its inactive state

Simulation vs. 
Inactive crystal  
   structure

Helix 6

Rosenbaum et al., Nature 2010; Dror et al., PNAS 2011



After months of staring at simulation results:  
There are three key, “loosely connected” regions;  

each adopts multiple conformational states
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What are the “important events”?

• They usually involve conformational (that is, 
structural) changes 

• These changes can be subtle: they might involve 
only a very small part of the protein 

• The protein is moving constantly 
• We tend to care most about rare changes

36



Can we approach this as a  
changepoint detection problem?

simulation time (ns)0

2% of time series
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Challenge: 
Each 
change 
affects only 
a few of the 
thousands 
of time 
series that 
describe a 
simulation

Fan et al., 
PNAS, 2015



Detection of simultaneous change points

• Approach this as a statistical change-point 
detection problem, but: 
– Determine both change times and the observables that 

change at each time 
– Search, in particular, for simultaneous changes of 

multiple observables 
• We can formulate this as a giant optimization 

problem 
– We can solve this problem efficiently by iterative 

application of recently introduced dynamic 
programming algorithms



Simultaneous	changepoint	detection: 
A	simple	example

Time	(µs)
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m
s	(
Å) Four	sample	time	series	(of	

hundreds/thousands),	each	
corresponding	to	the	
distance	between	a	pair	of	
protein	atoms	in	a	
simulation



Simultaneous	changepoint	detection: 
A	simple	example
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Wish	to	choose	a	small	set	
of	changepoints	such	that	
each	observable	has	
constant	statistics	between	
changepoints.	
!
Exploit	the	fact	that	
changes	in	different	
observables	are	likely	to	
occur	simultaneously,	
especially	if	the	atoms	
involved	are	nearby.



Our	approach

Solve	a	big	optimization	
problem	to	determine	when	
changes	occur,	which	
observables	they	affect,	and	
how	the	statistics	of	those	
observables	change	(i.e.,	what	
parts	of	the	protein	change	at	
what	times,	and	how).			
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Our	approach
Choose	changepoints,	and	
model	parameters	for	each	
segment,	to	maximize:	
!
[Likelihood	of	data	given	
model]	–	[Penalty	function]	
!
where	the	penalty	function	
increases	with	the	number	of	
changepoints,	but	less	so	if	
multiple	changepoints	are		
simultaneous	(especially	if	the	
atoms	involved	are	nearby	one	
another).
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Our approach: Simultaneous penalized likelihood 
estimation (SIMPLE) change point detection

A  Candidate change points
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Detected	change	points	in	WW	domain	
folding	simulation



Detected	change	points	in	
simulation	of	unfolded	Trp	cage



Performance comparison 
(on synthetic data for which we know the true change times)

SIMPLE  
(Our method)

Multisample 
binary segmentation

Group-fused  
LASSO

Univariate (RMSD)

Univariate (PCA)

Markov State  
Model



Limitations of the study

• Basic problem definition: is one always looking 
for “sudden” changes of this sort?  

• No guarantee that optimization algorithm will 
converge to global optimum 

• Lack of good software for visualizing the results  
– We actually developed (and released) such software, 

but its portability is poor 
• Although the paper describes a general method, 

it doesn’t demonstrate application of the method 
to other types of data
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Supplemental slides

48



Problem	formulation	as	optimization
	



Theoretical	consistency	guarantee



Algorithmic	approach

• 	


