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Why Would Protein Residues Coevolve?

● Random mutations occur in protein residues over time.  
The ones that survive create variations in a protein family.

● In order for a protein to accomplish its function, it must 
preserve structure relevant to that function.

○ ie pocket shape for ligand binding
● Interactions between residues play a large role in 

determining secondary and tertiary structure of the protein
○ The protein will fold in such a way that negatively and 

positively charged residues are in contact, 
hydrophobic residues are in contact in the inside of 
the protein, etc.

● Residue mutations over time are more likely to persist if 
they preserve the proximity of interacting residues-- 
otherwise the structure and function of the protein would 
have failed.

http://www.slideshare.net/ranajni_09/protein-structure-42518525



Aspartate (-) at 63 and Lysine (+) at 21Aspartate (-) at 153 and Arginine (+) at 134

human CD4
primary receptor onto which the HIV virus docks as it enters the T cell (Pymol) 

Variations of this protein that 
persisted through evolution 
most likely maintained the 

shape that occurs when these 
residues are in contact.

These residues are likely to 
have co-evolved.



Analytical Approach: Multiple Sequence Alignment (MSA)

● Align sequences of proteins within a given 
family to identify how protein sequences 
have changed over time

● Proteins assumed to have an evolutionary 
relationship by which they share a lineage 
and are descended from a common 
ancestor

● Identify differences between homologous 
sequences to note how they have evolved 
over time

https://www.researchgate.net/figure/234090396_fig1_Figure-1-Multiple-sequence-alignments-of-insulin-protein-sequences-The-species-and

MSA of insulin protein sequences



Correlated positions in MSA indicate co-evolution

http://mistic.leloir.org.ar/docs/help.html

● Mutations of essential residues occur, 
only if a compensatory mutation takes 
place elsewhere within the protein to 
preserve activity or structure

● Evolution conserves interactions 
between residues that maintain 
structure and function by constraining 
the sets of mutations that are accepted

● Since evolutionary variations in the 
sequences are constrained by a number 
of requirements, using the information 
contained in MSAs may be possible to 
predict residue pairs which are likely to 
be in contact

● That is, those positions in a MSA that 
are conserved likely co-evolved over 
time and are thus in contact

http://mistic.leloir.org.ar/docs/help.html
http://mistic.leloir.org.ar/docs/help.html


Use of coevolution 
methods is on the rise

Why?
1. The decreasing cost of 
sequencing 

2. The development of 
improved computational 
methods



Abundance of sequencing data

Cost of sequencing is 
falling faster than Moore’s 
Law 

$1K to sequence human 
genome 

https://www.genome.gov/images/content/costpergenome2015_4.jpg



Improved computational methods

In particular, methods that have solved the problem of 

transitivity!

https://upload.wikimedia.org/wikipedia/commons/b/b8/Beta-meander1.png
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New methods find the 

minimal set of contacts 

that best explain the 

sequence data



“Three Dimensional Structures of 
Membrane Proteins from Genomic 
Sequencing”

Hopf et al. Cell 149 (2012)



Transmembrane Proteins

Span entirety of a biological 
membrane

Function as gateways for transport 
of substances across the 
membrane 

~50% of all drug targets contain a 
membrane domain

http://7e.biopsychology.com/vs/vs04/vs0406.png

GABA Receptor



Knowledge of 3D structure enables discovery

Facilitate characterization of molecular 
mechanisms

Accelerate development of drugs 

Better understand protein function

http://cdn.rcsb.org/images/hd/co/4cof/4cof.0_chimera_tm_1000_1000.png

GABA Receptor



But 3D structures of most transmembrane proteins 
remain unknown

Protein Structure Prediction: 1D sequence → 3D structure

Template-based modeling covers at “max 10% of all human transmembrane 
proteins”

Existing ab initio methods are inaccurate and computationally expensive

Homologous protein 
with known 3D structure

?

?ALAKYMVKRDTENVNDKLRGL...
Protein Sequence



Can we extract further information from sequence data?

http://www.dnastar.com/blog/wp-content/uploads/2015/08/ProteinDBGrowthBar3.png



Yes, via Coevolution!

Key idea: use coevolving residue pairs as distance constraints 
for improved ab initio folding

Assumption: coevolving residue pairs are in direct contact

Pairwise distance constraints

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).



EVfold_membrane 

Improved de novo prediction of 3D structures of transmembrane proteins using 
information from evolutionary constraints

Unlike previous approaches, uses neither fragments nor homologous 3D structures 

Build MSA
Entropy 

Maximization

Ab Initio Folding 
With Pairwise 

Distance 
Constraints

Input: 1D protein sequence 

Output: predicted 3D structure (all atom-coordinates)



Build MSA

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

Entropy Maximization

Find residue pairs that best explain the data

Filter based on predicted secondary 
structure and membrane topology

Query Sequence:
ACPRLDVDSQ...



Ab Initio Folding with Evolutionary Distance Constraints

Fold fully extended polypeptide chain ab initio using resulting 
set of evolutionary distance constraints

Choose top model based on 1) lipid accessibility of residues, 2) 
quality of secondary structure formation 

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

Iterate through 40 
to L constraints

Physics-based folding



Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

Evaluation on known 3D structures
Use template modeling score (TM-score) to compare predicted with experimental 
structure



Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

Evaluation on unknown 3D structures
Use DALI Z-score to compare predicted model to most structurally similar known 
3D structure in the PDB



What do evolutionary constraints really represent?

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

Is the strength of evolutionary coupling on a residue an 
indication of its functional importance within the protein?



Strengths of EVfold_membrane

Takes ~1-2 min of computing time per model on a single CPU (household 
laptop) for protein of average size; reduces the conformational search space

Can be applied to large protein sizes up to 14 helices; previous methods 
were limited to 4-7 helices 

Input requires neither homologous 3D structures nor database fragments 

Substantially improves prediction accuracy 



Study Limitations

Ranking of predicted models is poorly explained

The evaluation of predictions for proteins of unknown 3D structure uses 
the most structurally similar protein in the entire PDB

Validation was done on proteins with >1000 known sequences per family 
and high coverage (sequence/residue ratio); unlikely to be scalable for all 
proteins

Fundamentally limited by the accuracy of the statistical method used to 
identify residue pairs in direct contact



“Improved Contact Predictions Using 
the Recognition of Protein Like 
Contact Patterns”

Deep learning meets statistical inference contact prediction

Skwark et al. PLOS Computational Biology 10.11 (2014)



A Priori knowledge: Common Contact Patterns

α-Helices β-Sheets

http://scriptphd.com/chemistry/2010/06/22/guest-article-beauty-and-the-building-blocks/
https://www.quora.com/Why-are-most-alpha-helices-in-proteins-right-handed



A Priori Knowledge Can Guide Prediction

• Technology in this field attempts to predict a series of 

residues in contact that describe overall shape of protein

• We know that proteins tend to take on certain structures, 

and these structures correspond to contact patterns 

• Idea: pay attention to surrounding contacts, and if they 

indicate a commonly observed contact pattern

• It’s a pretty safe bet to generalize to the pattern!



Strength: successive layer considers 
nearby contacts in receptive field

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889



PonsC2 Pipeline

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889



Why deep learning?  Finds general abstractions in data

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/



Five additional features for input data

1. Contact prediction from PSICOV and plmDCA

2. Amino acid separation

3. Predicted secondary structure

4. Position specific score for amino acids

5. Predicted relative surface accessibility



1. PSICOV & pIMDCA: 
contact predictions from sequence correlation

2012: 
•sparse inverse covariance estimation
•corrections for phylogenetic and 
entropic correlation noise

2014:
• correlation can arise from firsthand 
interaction but can also be 
network-propagated via intermediate 
sites
•separates direct from indirect 
interactions 



2. Amino acid separation: improvement at all distances

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889



3. Secondary structure: 
improvement largest for β-sheets

•Contacts between β-sheets 
primarily mediated through 
backbone H bonds
•Side chains not under 
co-evolutionary pressure 

•Least improvement for α proteins
•Performance highest for mixed α/β proteins
•General limitation in the field: different technologies 
catering to specific types of proteins.  
•Does this imply over-fitting, or risk in generalization?

http://people.mbi.ucla.edu/yeates/153AH_2009_project/hsieh.html
http://www.cryst.bbk.ac.uk/PPS2/course/section8/ss-960531_10.html

http://people.mbi.ucla.edu/yeates/153AH_2009_project/hsieh.html
http://people.mbi.ucla.edu/yeates/153AH_2009_project/hsieh.html


4. Position specific score matrix incorporates 
likely evolutionary changes in family

www.nemates.org/uky/520/Lecture/Lect6/BIO520_2010_Lect6.ppt



Strength: significant 
prediction improvement 
in small protein families

•“vast majority of protein families 
may never reach the thousands of 
members that are needed for 
successful predictions”

•close homologs don’t provide as 
much co-varaition as distantly 
related proteins– number of 
efficient sequences takes 
redundancy into account

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions 
Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): 
e1003889. doi:10.1371/journal.pcbi.1003889



Limitation: predicting loop contacts

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889



Limitation: predicting loop contacts

•Variation in loops:
•Less a priori knowledge of observed 
contact patterns

•Ligand binding research:
•“In many cases, a protein’s function 
depends on the ability of its loops to 
adopt different 
conformations”-Oxford Protein 
Informatics Group
•Could we use ligands that drug binds 
as further input data?

http://www.blopig.com/blog/2016/06/conformational-variation-of-protein-loops/



PconsC2 performs better:

(a) Predominantly β conformation.  
PconsC2 filtered out spurious 
predictions at termini from PconsC

(b) limited overlap between individual 
predictions– PconsC2 reconciles 
conflicts

PconsC2 performs worse:

(c) protein contains few secondary 
structures

(d) PconsC2 invents contacts between 
secondary structures

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of 
Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889



“Accurate De Novo Prediction of 
Protein Contact Map by Ultra-Deep 
Learning Model”

Wang et al. PLOS Computational Biology 13.1 (2017)



General Idea

• Improve upon MSA co-evolution techniques for protein 

contact prediction by using deep learning techniques

• Combine various types and large quantities of input data
– Protein sequence profile

– Predicted 3-state secondary structure and solvent accessibility

– Direct co-evolutionary information, generated by CCMpred

– Mutual information and pairwise potential



Residual Neural Network Method

• Novel deep learning model formed by 

two deep residual neural networks

• Integrates evolutionary coupling (EC) 

and sequence conservation 

information 

• Approaches problem of protein 

contact map prediction like pixel-level 

image labeling

Wang et al. “Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep 
Learning Model.” PLOS Computational Biology 13.1 (2017)



Training and Testing

• Trained on subset of PDB25 proteins with solved structures

• Redundancy removal strategy

• Tested on publicly available CASP11 and CAMEO targets, as 

well as many membrane proteins

• Tested against currently available DCA methods and supervised 

machine learning methods
– PSICOV, Evfold, CCMpred, plmDCA, Gremlin, and MetaPSICOV



Results

Analyzed performance of the method in a number of contexts:

1. General performance against previous methods

2. As a function of # of sequence homologs

3. Contact-assisted protein folding

4. Difficult case studies



1. General performance against prior methods

Contact prediction 
accuracy on 76 past 
CAMEO hard targets

Contact prediction 
accuracy on 398 
membrane proteins

Wang et al. “Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep 
Learning Model.” PLOS Computational Biology 13.1 (2017)



2. Accuracy as Function of # of Sequence Homologs

Accuracy of this method 
(green), CCMpred (blue) 
and MetaPSICOV (red) 
with respect to the 
amount of homologous 
information measured by 
ln(Meff)

Wang et al. “Accurate De Novo Prediction of Protein Contact 
Map by Ultra-Deep Learning Model.” PLOS Computational 
Biology 13.1 (2017)



3. Contact-assisted protein folding

Quality comparison of contact-assisted models 
generated by this method and (A) CCMpred and 
(B) MetaPSICOV on the 41 CAMEO hard targets

Quality comparison of 
contact assisted models 
generated by this 
method and (A) 
CCMpred and (C) 
MetaPSICOV on 
CASP11 targets (red), 
CAMEO targets (blue), 
and membrane proteins 
(green)

Wang et al. “Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep 
Learning Model.” PLOS Computational Biology 13.1 (2017)



4. Study of difficult CAMEO targets
• Successfully folded the hardest 

targets for structure prediction 

released by CAMEO

• Identified novel folds in several 

CAMEO protein targets

Predicted model 
(red) and its native 
structure (blue) for 
the CAMEO test 
protein (PDB ID 
2nc8 and chain A)

Summary of results on 5 CAMEO hard targets with novel folds

Predicted models (red) and native structure (blue) for the CAMEO test 
protein (PDB ID 5dcj and chain A) by (A) this method, (B) CCMpred, and 
(C) MetaPSICOV



Novel Aspects and Advantages
1. Concatenates two deep residual neural networks 

2. Predicts all contacts of a protein simultaneously

3. Deeper architecture

4. Trains all 2D convolution layers simultaneously

5. Learns sequence-structure relationship from thousands of 

protein families



Additional Interesting Findings

1. Without using membrane proteins in training, this method has 

comparable accuracy on that set to methods trained with 

them

2. Identified model parameters most important to accuracy
a. Co-evolution strength produced by CCMpred

b. Depth of deep model



Study Limitations

1. Not particularly well-explained/well-written

2. Comparison to prior methods might not be right comparison

3. Limited size and scope of training set

a. Consists of only about 100 membrane proteins

4. Redundancy between training set and test set

5. Does not consider energy functions or fragment assembly



Future Directions and Further Applications

• Introduction of additional convolution layers
• Prediction of protein-protein and protein-RNA interfacial 

contacts



Appendix

Additional Slides



Build MSA Maximize power of detection

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).



Entropy maximization Constraint resolution

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

Find EV couplings (residue pairs) 
that best explain the data

Evolutionary 
Couplings

Remove couplings that are not consistent 
with predicted membrane topology + 
secondary structure



Evaluation on known 3D Structures

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).

Interesting insight: 3D prediction accuracy is stable even as TPR 
of evolutionary constraints decreases



What do evolutionary constraints really represent?

1. Positions of Conformational Change
2. Functional Sites



1. Homo-Oligomer Contacts

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).



1. Homo-Oligomer Contacts

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).



Can coevolution predict more than 1 3D conformation?

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–1621 (2012).



Sequence data far outpaces structure data

http://www.dnastar.com/blog/wp-content/uploads/2015/08/ProteinDBGrowthBar3.png


