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Why Would Protein Residues Coevolve?

e Random mutations occur in protein residues over time. ' _\
The ones that survive create variations in a protein family. ™
e In order for a protein to accomplish its function, it must . onic bond
preserve structure relevant to that function.
o ie pocket shape for ligand binding
e Interactions between residues play a large role in
determining secondary and tertiary structure of the protein H
o The protein will fold in such a way that negatively and "
positively charged residues are in contact, '
hydrophobic residues are in contact in the inside of
the protein, etc. Nydrophobic intsractions

e Residue mutations over time are more likely to persist if e 4 Lﬁ'ﬁ;‘;‘“j:.?ﬂ”ﬂff
they preserve the proximity of interacting residues-- l_,, /), 1 van dr Wasls
otherwise the structure and function of the protein would M, WE on, i
have failed. HE CHy backbane
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http://www.slideshare.net/ranajni_09/protein-structure-42518525



human CD4
primary receptor onto which the HIV virus docks as it enters the T cell (Pymol)

Variations of this protein that
persisted through evolution
most likely maintained the

shape that occurs when these
residues are in contact.

These residues are likely to
have co-evolved.

Aspartate (-) at 153 and Arginine (+) at 134 Aspartate (-) at 63 and Lysine (+) at 21



Analytical Approach: Multiple Sequence Alignment (MSA)

MSA of insulin protein sequences

e Align sequences of proteins within a given
family to identify how protein sequences
have changed over time

e Proteins assumed to have an evolutionary
relationship by which they share a lineage
and are descended from a common
ancestor

e |dentify differences between homologous
sequences to note how they have evolved
over time
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Correlated positions in MSA indicate co-evolution

Conserved Variable
Position Paosition

v v
ACPRLDVDSQ
ACPR-EVDCN
GCPRIELDSH
GCGKIEVESD
-CGKLEIBAT
ACARVD-DAY
GCRRKELDCE

t ¢

Coevolved
Positions

[

Inference

el m—

Constraint

/

Distance between
coevolved positions

Mutations of essential residues occur,
only if a compensatory mutation takes
place elsewhere within the protein to
preserve activity or structure

Evolution conserves interactions
between residues that maintain
structure and function by constraining
the sets of mutations that are accepted
Since evolutionary variations in the
sequences are constrained by a number
of requirements, using the information
contained in MSAs may be possible to
predict residue pairs which are likely to
be in contact

That is, those positions in a MSA that
are conserved likely co-evolved over
time and are thus in contact


http://mistic.leloir.org.ar/docs/help.html
http://mistic.leloir.org.ar/docs/help.html

Use of coevolution
methods is on the rise
Why?

1. The decreasing cost of
seguencing

2. The development of
improved computational
methods

Science...
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Hundreds of elusive protein structures pinned down
from genome data

By Robert Service | Jan.19, 2017, 2:00 PM



Abundance of sequencing data

Cost per Genome Cost of sequencing is
falling faster than Moore’s
' Law

S1K to sequence human
genome

National Human Genome
Research Institute

genome.gov/sequencingcosts

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

https://www.genome.gov/images/content/costpergenome2015_4.jpg




Improved computational methods

In particular, methods that have solved the problem of
transitivity! A

New methods find the
minimal set of contacts

that best explain the

Indirect
Correlation

sequence data

https://upload.wikimedia.org/wikipedia/commons/b/b8/Beta-meanderl.png



“Three Dimensional Structures of
Membrane Proteins from Genomic
Sequencing”

Hopf et al. Cell 149 (2012)



GABA Receptor

Transmembrane Proteins

Span entirety of a biological
membrane

Function as gateways for transport

of substances across the e | DOISSIAN
membrane M- neai @
OO | O

“50% of all drug targets contain a
membrane domain

http://7e.biopsychology.com/vs/vs04/vs0406.png



Knowledge of 3D structure enables discovery

GABA Receptor

Facilitate characterization of molecular
mechanisms

Accelerate development of drugs

Better understand protein function

http://cdn.rcsb.org/images/hd/co/4cof/4cof.0_chimera_tm_1000_1000.png



But 3D structures of most transmembrane proteins
remain unknown

Protein Structure Prediction: 1D sequence = 3D structure

Template-based modeling covers at “max 10% of all human transmembrane

proteins”
Homologous protein
with known 3D structure

Existing ab initio methods are inaccurate and computationally expensive

ALAKYMVKRDTENVNDKLRGL...

Protein Sequence




Can we extract further information from sequence data?
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Yes, via Coevolution!

Key idea: use coevolving residue pairs as distance constraints
for improved ab InltIO f0|d|ng Pairwise distance constraints

//'

Distance between
coevolved positions

Assumption: coevolving residue pairs are in direct contact

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621(2012).



EVfold_membrane

Improved de novo prediction of 3D structures of transmembrane proteins using
information from evolutionary constraints

Unlike previous approaches, uses neither fragments nor homologous 3D structures

Input: 1D protein sequence

Ab Initio Folding

: ﬁ Entropy With Pairwise
Build MSA Maximization Distance

Constraints

Output: predicted 3D structure (all atom-coordinates)




Build MSA Entropy Maximization

Query Sequence: Find residue pairs that best explain the data
ACPRLDVDSAQ...
Filter based on predicted secondary

@ structure and membrane topology
ACPRLDVDSQ ac ARl ook
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Ab Initio Folding with Evolutionary Distance Constraints

Fold fully extended polypeptide chain ab initio using resulting
set of evolutionary distance constraints

Physics-based folding
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Choose top model based on 1) lipid accessibility of residues, 2)
quality of secondary structure formation

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621(2012).



Evaluation on known 3D structures

Use template modeling score (TM-score) to compare predicted with experimental
structure

Cytochrome c oxidase
out subunit 1l
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Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621(2012).



Evaluation on unknown 3D structures

Use DALI Z-score to compare predicted model to most structurally similar known
3D structure in the PDB
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What do evolutionary constraints really represent?

Is the strength of evolutionary coupling on a residue an
indication of its functional importance within the protein?

out

Known 3D




Strengths of EVfold_membrane

Takes “1-2 min of computing time per model on a single CPU (household
laptop) for protein of average size; reduces the conformational search space

Can be applied to large protein sizes up to 14 helices; previous methods
were limited to 4-7 helices

Input requires neither homologous 3D structures nor database fragments

Substantially improves prediction accuracy



Study Limitations

Ranking of predicted models is poorly explained

The evaluation of predictions for proteins of unknown 3D structure uses
the most structurally similar protein in the entire PDB

Validation was done on proteins with >1000 known sequences per family
and high coverage (sequence/residue ratio); unlikely to be scalable for all
proteins

Fundamentally limited by the accuracy of the statistical method used to
identify residue pairs in direct contact



“Improved Contact Predictions Using
the Recognition of Protein Like
Contact Patterns”

Deep learning meets statistical inference contact prediction

Skwark et al. PLOS Computational Biology 10.11 (2014)




A Priori knowledge: Common Contact Patterns

a-Helices B-Sheets
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http://scriptphd.com/chemistry/2010/06/22/guest-article-beauty-and-the-building-blocks/
https://www.quora.com/Why-are-most-alpha-helices-in-proteins-right-handed



A Priori Knowledge Can Guide Prediction

Technology in this field attempts to predict a series of
residues in contact that describe overall shape of protein
We know that proteins tend to take on certain structures,
and these structures correspond to contact patterns

ldea: pay attention to surrounding contacts, and if they
indicate a commonly observed contact pattern

It’s a pretty safe bet to generalize to the pattern!



Frsqusrey

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889
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Why deep learning? Finds general abstractions in data

L
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Output Layer

Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

edges combinations of edges object models

https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/



a &~ b=

Five additional features for input data

Contact prediction from PSICOV and pImDCA
Amino acid separation

Predicted secondary structure

Position specific score for amino acids

Predicted relative surface accessibility



1. PSICOV & pIMDCA:
contact predictions from sequence correlation

ORIGINAL PAPER "\ wnieiimaeantss

Sequence analysis Advance Access publication November 17, 2011

PSICOV: precise structural contact prediction using sparse
inverse covariance estimation on large multiple sequence
alignments

David T. Jones'-*, Daniel W. A. Buchan', Domenico Cozzetto! and Massimiliano Pontil?

2012:

esparse inverse covariance estimation
ecorrections for phylogenetic and
entropic correlation noise

Contants lists available at ScienceDirect

Journal of Computational Physics

www.alsevier.com/locateljcp

Fast pseudolikelihood maximization for direct-coupling
analysis of protein structure from many homologous
amino-acid sequences

Magnus Ekeberg *®*', Tuomo Hartonen =%, Erik Aurell >-~*

2014:

e correlation can arise from firsthand
interaction but can also be
network-propagated via intermediate
sites

eseparates direct from indirect
interactions



2. Amino acid separation: improvement at all distances
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Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889



3. Secondary structure:
improvement largest for 3-sheets
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*General limitation in the field: different technologie

catering to specific types of proteins.
*Does this imply over-fitting, or risk in generalization cim
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http://people.mbi.ucla.edu/yeates/153AH_2009_project/hsieh.html
http://people.mbi.ucla.edu/yeates/153AH_2009_project/hsieh.html

4. Position specific score matrix incorporates
likely evolutionary changes in family

Amino ackd 1 2 3 4 5 6 7

M 0.541 -0.061 -0.061 -0.061 -(0.061 -0.061 -0.061
T -0.061 0,240 0.240 -0.061 -0.061 -0.061 -0.061
E -0.061 -0.061 0.240 -0.061 0416 0.240 -0.061
G -0.061 -0.081 -0.061 0.416 0,240 -0.061 -0.061
W -0.061 -0.061 -0.061 -0.061 -00.061 0.240 0.240
I -0.061 0.416 -0.061 -0.061 -0.061 -0.061 0.240
H -0.061 -0.061 -0.061 -0.061 -0.061 -0.061 -0.061
=] -0.061 -0, 061 -0.061 0.240 -0 061 -0.061 0,061
A -0.061 -0.061 0.240 -0.061 -0.061 -0.061 0061
C -0.061 -0.061 -0.061 -0.061 -00.061 0.240 0.240

The matrix assigns positive scores to residues
that appear more often than expected by
chance and negative scores to residues that
appear less often than expected by chance.

www.nemates.org/uky/520/Lecture/Lect6/BIO520_2010_Lect6.ppt



Strength: significant
prediction improvement
in small protein families

*“vast majority of protein families
may never reach the thousands of
members that are needed for
successful predictions”

*close homologs don’t provide as
much co-varaition as distantly
related proteins— number of
efficient sequences takes
redundancy into account

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions
Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11):
©1003889. doi:10.1371/journal.pcbi.1003889

— PconsC2 — PconsC — pImDCA —  PSICOV
10 1.0
0.8 0.8
0.6 0.6
Z z
g &
0.4 0.4
0.2 0.2
107 BT BT 10° BT (T T 10 T
Effective sequences Effective sequences
(a) All proteins (b) All
1.0 1.0
0.8 0.8
0.6 0.6
g B
04 0.4
0.2 0.2
O‘gu’ 10* 10° 10° 10* i gu"“ 10 10° 10° 10" 10
Effective sequences Effective sequences
(c) All 8 (d) Mixed o/f



Limitation: predicting loop contacts

Table 5. PPV values at L=1 for contacts between different secondary structure classes.

Structural category Real PSICOV plmDCA PconsC PconsC2
=-a 11% 023 (15%) 0.22 (17%) 0.28 (16%) 0.40 (15%)
x-p 8% 031 (9%) 0.46 (7%) 0.48 (8%) 0.54 (7%)
x - loop 16% 0.18 (21%) 0.22 (21%) 0.27 (21%) 0.37 (13%)
g-p 22% 041 (13%) 0.51 (12%) 0.52 (13%) 0.57 (34%)
fi - loop 22% 0.20 (23%) 0.22 (219%) 0.26 (22%) 0.46 (16%)
loop -loop 21% 0.19 (18%) 0.17 (22%) 0.24 (199%) 0.30 (16%)
ALL 024 0.26 0.31 0.46

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PLoS Comput Biol 10(11): e1003889. doi:10.1371/journal.pcbi.1003889



Limitation: predicting loop contacts

*Variation in loops:
Less a priori knowledge of observed
contact patterns

Ligand binding research:
*“In many cases, a protein’s function
depends on the ability of its loops to
adopt different
conformations”-Oxford Protein
Informatics Group
*Could we use ligands that drug binds
as further input data?

http://www.blopig.com/blog/2016/06/conformational-variation-of-protein-loops/



PconsC2 performs better:

(a) Predominantly B conformation.
PconsC2 filtered out spurious
predictions at termini from PconsC

(b) limited overlap between individual
predictions— PconsC2 reconciles
conflicts

PconsC2 performs worse:

(c) protein contains few secondary
structures

(d) PconsC2 invents contacts between
secondary structures

Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved Contact Predictions Using the Recognition of
Protein Like Contact Patterns. PLoS Comput Biol 10(11): €1003889. doi:10.1371/journal.pcbi. 1003889
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“Accurate De Novo Prediction of
Protein Contact Map by Ultra-Deep
Learning Model”

Wang et al. PLOS Computational Biology 13.1 (2017)



General Idea

* |Improve upon MSA co-evolution techniques for protein

contact prediction by using deep learning techniques

 Combine various types and large quantities of input data

Protein sequence profile

Predicted 3-state secondary structure and solvent accessibility
Direct co-evolutionary information, generated by CCMpred
Mutual information and pairwise potential



Residual Neural Network Method

Novel deep learning model formed by
two deep residual neural networks
Integrates evolutionary coupling (EC)
and sequence conservation
information

Approaches problem of protein
contact map prediction like pixel-level
image labeling

1d
Residual
Network

sequence profile and
predicted structures

) oy

7

1d conv

coevolution info,
pairwise potential

Merge

LXLX3n

1d conv

LA N J

1d conv

pairwise feature
derived from
convoluted
sequential
feature

convoluted sequential

features

conversion of
sequential to
pairwise feature

~

2d conv

2d conv

2d conv

v

predicted contact map

Wang et al. “Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep
Learning Model.” PLOS Computational Biology 13.1 (2017)
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Training and Testing

Trained on subset of PDB25 proteins with solved structures
Redundancy removal strategy

Tested on publicly available CASP11 and CAMEO targets, as
well as many membrane proteins

Tested against currently available DCA methods and supervised

machine learning methods
— PSICOV, Evfold, CCMpred, pImDCA, Gremlin, and MetaPSICOV



Results

Analyzed performance of the method in a number of contexts:

General performance against previous methods
As a function of # of sequence homologs
Contact-assisted protein folding

Difficult case studies

s~



1. General performance against prior methods

L/i10 L5 L2 L L/10 L/5 L2 L L/10 L/5 L/2 L
0.17 0.13 0.11 0.09 0.23 0.19 0.13 0.10 0.25 0.22 0.17 0.13
0.20 0.15 0.11 0.08 0.24 0.19 0.13 0.09 0.25 0.23 0.18 0.13 L
0.22 0.16 0.11 0.09 0.27 0.22 0.14 0.10 0.30 0.26 0.20 0.15 Contact predlctlon
0.23 0.18 0.12 0.09 0.27 0.22 0.14 0.10 030 0.26 0.20 0.15 accuracy on 76 past
0.21 0.17 0.11 0.08 0.27 0.22 0.14 0.10 0.31 0.26 0.20 0.15
056 047 031 020 053 045 032 | 022 047 | 042 033 025 CAMEQ hard targets
0.67 0.57 0.37 0.23 0.69 0.61 0.42 0.28 0.69 0.65 0.55 0.42
Contact prediction L/10 L/5 L2 L L/10 L/5 L2 L L/10 L/5 L2 L
0.16 0.13 0.09 0.07 0.28 0.22 0.13 0.09 0.4 0.37 0.26 0.18
accuracy on 398_ 0.22 0.16 0.10 0.07 0.29 0.21 0.13 0.09 0.42 0.34 0.23 0.16
membrane proteins 0.27 0.19 0.11 0.08 0.36 0.26 0.15 0.10 0.52 0.45 0.31 0.21
0.26 0.18 0.11 0.08 0.35 0.25 0.14 0.09 0.51 0.42 0.29 0.20
0.27 0.19 0.11 0.07 0.37 0.26 0.15 0.10 0.52 0.45 0.32 0.21
0.45 0.35 0.22 0.14 0.49 0.40 0.27 0.18 0.61 0.55 0.42 0.30
0.60 0.46 0.27 0.16 0.66 0.53 0.33 0.22 0.78 0.73 0.62 0.47 I

Wang et al. “Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep

Learning Model.” PLOS Computational Biology 13.1 (2017)



2. Accuracy as Function of # of Sequence Homologs
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3. Contact-assisted protein folding

Quality comparison of
contact assisted models
generated by this
method and (A)
CCMpred and (C)
MetaPSICOV on
CASP11 targets (red),
CAMEDO targets (blue),
and membrane proteins
(green)
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Quality comparison of contact-assisted models
generated by this method and (A) CCMpred and
(B) MetaPSICQOV on the 41 CAMEO hard targets

Wang et al. “Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep
Learning Model.” PLOS Computational Biology 13.1 (2017)



4. Study of difficult CAMEO targets

e Successful |y folded the hardest Summary of results on 5 CAMEO hard targets with novel folds
. . Target CAMEO ID Type ; Len Meff Method RMSD(A) TMscore
ta rgets fO r structure p FEd Iction 2nc8A 2016-09-10_00000002_1 8 182 250 Our server 6.5 0.61
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5figB 2016-11-12_00000046_1 o/ 260 113 Our server 7.12 0.61
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Predicted model
(red) and its native
structure (blue) for
the CAMEO test
protein (PDB ID
2nc8 and chain A)

(A) (B) (C)

Predicted models (red) and native structure (blue) for the CAMEO test
protein (PDB ID 5dcj and chain A) by (A) this method, (B) CCMpred, and
(C) MetaPSICOV
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Novel Aspects and Advantages

Concatenates two deep residual neural networks

Predicts all contacts of a protein simultaneously

Deeper architecture

Trains all 2D convolution layers simultaneously

Learns sequence-structure relationship from thousands of
protein families



Additional Interesting Findings

Without using membrane proteins in training, this method has
comparable accuracy on that set to methods trained with
them

ldentified model parameters most important to accuracy

a. Co-evolution strength produced by CCMpred
b. Depth of deep model



1.

Study Limitations

Not particularly well-explained/well-written

Comparison to prior methods might not be right comparison
Limited size and scope of training set

a. Consists of only about 100 membrane proteins
Redundancy between training set and test set

Does not consider energy functions or fragment assembly



Future Directions and Further Applications

e Introduction of additional convolution layers
e Prediction of protein-protein and protein-RNA interfacial
contacts



Appendix

Additional Slides



Build MSA Maximize power of detection

B, adrenergic receptor (B2AR) Adiponectin receptor 1 (AdipoR1)
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Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621(2012).




Entropy maximization
Find EV couplings (residue pairs)

that best explain the data

acARL D VIDE
ACPR—EVDE
GCPHRI[IEL|D H
GCQKI|I EVEP
—CGKLEIEAT
ACARND -|DpY
GCQEWELEFE

Evolutionary
Couplings

Constraint resolution

Remove couplings that are not consistent
with predicted membrane topology +
secondary structure

LA % Evolutionary constraints used as 13
L8 distance constraints

% Constraints conflicting with
predicted transmembrane topology

Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621(2012).



Evaluation on known 3D Structures

Interesting insight: 3D prediction accuracy is stable even as TPR
of evolutionary constraints decreases
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Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621(2012).



What do evolutionary constraints really represent?

1. Positions of Conformational Change
2. Functional Sites



1. Homo-Oligomer Contacts
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1. Homo-Oligomer Contacts
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Can coevolution predict more than 1 3D conformation?

cytoplasmic side closed cytoplasmic side open
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Hopf, T. A. et al. Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607-1621(2012).



Sequence data far outpaces structure data
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