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What are CNNs?

Figure 1: recognizing scenes and the system is able to suggest relevant tags
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What are CNNs?

Figure 2: recognizing everyday objects, humans and animals
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What are CNNs?

Figure 3: Architecture for classification

Primary purpose of Convolution:

• Extracting features from the input image while preserving
spatial relationship between pixels.

• Learning image features using small squares of input data.
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Convolutional Neural Network for virtual screening

Figure 4: From CS231n, use of 5 different filters on a 32*32*3 input
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We want to learn the weights of the filters to discover features.

Figure 5: Filters
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Goal



Goal

Use of Deep Convolutional Neural Networks (CNN) to predict the
bioactivity of small molecules for drug discovery application.

• Apply local convolutional filters to structural target input
information.

• Biochemical interactions are local by nature so should be
well-handled by these sparse ML architectures.

• Predict new active molecules for targets.

.
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Drugs Design techniques



Ligand-based Drug Design

Given a set of diverse ligands that bind to a receptor, the goal is to
create a model of the receptor with this information. It ends up
searching for molecules with shape similar to the ones of known
activities.

Advantages:

• Computationally very efficient

Drawbacks:

• Prevent serendipity in drug discovery
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Structured-based Drug design

It involves docking of candidate ligands into a protein target +
scoring function (based on energy) to estimate the likelihood that
the ligand will bind to the protein.
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Convolutional Neural Network for
virtual screening



Convolutional Neural Network: Architecture

Typically, the cross-entropy loss function is used for trqining a
probabilistic classification:

L(f, (x, y)) = −ylog(f(x))− (1− y)log(1− f(x)), for y binary.
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Method



Input representation

The input representation is a 5 steps process which results in a 1D
vector that is given to the input layer.

1. Find the binding site with a flooding algorithm (exploration
through the surface of the protein)

2. Define a Cartesian 3D grid which center is set to be the
center-of-mass of the binding site.

3. Choose a pose within the binding site cavity.
4. Crop the geometric data to fit within an appropriate bounding
box.

5. Unfold the 3D grid into a 1D floating point vector.

Values: Enumeration of atom types.

11



Datasets

1. The Directory of Useful Decoys Enhanced (DUDE):
• Gather diverse sets of active molecules for a set of target proteins.
• Prevent analogue bias: cluster according to similar active. Take
one representative of each class.

• Each active comes with a set of property matched decoys (PMD,
inactive).

• Benchmark: 102 targets, 22,886 actives (average of 224 actives per
target) + 50 PMD per active.

• Test set: 30 targets
• Training set: remaining 72 targets

2. ChEMBL-20 PMD: another DUDE-like dataset.
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Datasets: Limitations

No experimental validation to verify that decoys are actually inactive.
Decoys are chosen topologically very dissimilar from the actives.

The method is blind to cases where shapes of decoys are close to
the ones of actives.
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Results



Baseline: Smina

Smina is used as the baseline. It implements an improved empirical
scoring function and minimization.

Figure 6:
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Conclusion



Filters specializations

Apply filter to input data and map the location of biggest magnitude
to the relevant subset of the site of the binding. This subset has
specific chemical functions and the filter is specializing as a detector
of these functions.
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Remarks

1. We do not know anything about any validation step to set the
number of hidden layers.

2. We do not know about how the initialization of the weights is
done (usually, it is drawn from a uniform distribution)

3. Why using backpropagation instead of a second order method
like conjugate gradient which could allow for faster
convergence?

16



Lawrence Lin Murata

Introduc)on 
to Machine Learning 
and Deep Learning



(Very Quick) 
Introduc)on 

to Machine Learning 
and Deep Learning

Lawrence Lin Murata



Machine Learning



Neural Networks



Neural Networks



Deep Learning



Learning Deep Architectures

Lawrence Lin Murata

for Interac)on Predic)on 
in Structure-based Virtual Screening



Learning Deep 
Architectures

for Interac)on 
Predic)on 

in Structure-based 
Virtual Screening



Learning Deep 
Architectures



Learning Deep 
Architectures

for Interac)on 
Predic)on 

in Structure-based 
Virtual Screening



for Interac)on 
Predic)on 



for Interac)on 
Predic)on 



for Interac)on 
Predic)on 

💊 😈+



Learning Deep 
Architectures

for Interac)on 
Predic)on 

in Structure-based 
Virtual Screening



in Structure-based 
Virtual Screening



STRUCTURE LIGANDVS.

in Structure-based 
Virtual Screening



STRUCTURE

in Structure-based 
Virtual Screening



in Structure-based 
Virtual Screening



in Structure-based 
Virtual Screening

💊😈



Problems in Structure-based 
Virtual Screening
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1. Complex chemical space 

2. Lack of exhaus)ve training data 

3. High number of false posi)ves

Problems in Structure-based 
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1. More training data 

2. More accurate learnable fingerprints 

3. BeOer learning techniques 

4. More experimenta)on 

5. Real impact

Future
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Overview

 Background

 Docking and Classical Scoring Functions

 Generic Machine Learning Scoring Functions for Binding Affinity

 Family Specific Machine Learning Scoring Functions

 Machine Learning Scoring Functions for Virtual Screening

 Emerging Applications of Machine Learning Scoring Functions



Background

 Docking

 Scoring 

Functions/Binding 

Affinity

 Virtual Screening

http://www.intechopen.com/books/protein-engineering-technology-and-application/protein-protein-and-protein-ligand-docking



Docking and Classical Scoring 

Functions

 Docking – two steps: pose generation, scoring

 Classical Scoring Functions and limitations

http://archive.cnx.org/contents/4e7287b0-6c38-4829-abeb-3ae357bbf60f@10/protein-ligand-docking-including-flexible-receptor-flexible-ligand-docking



Machine Learning Scoring Functions

 Can capture more complex and non – linear characteristics

 Two applications: binding affinity and virtual screening

 Feature selection is very important

 Many benchmarks and metrics for performance (Pearson 

Correlation Coefficient for binding affinity, Enrichment Factor for 

virtual screening)

WIREs Comput Mol Sci 2015, 5:405–424. doi: 10.1002/wcms.1225



Generic Machine Learning Scoring 

Functions for Binding Affinity

 Work for many diverse protein 
– ligand complexes

 Earliest was Kernal-Partial 
Least Squares, showed 
nonlinear machine learning 
scoring function could 
capture functional form of 
binding affinity

 PDBbind benchmark standard 
for comparing performance

WIREs Comput Mol Sci 2015, 5:405–424. doi: 10.1002/wcms.1225



RF - Score

 Random Forest

 Features: number of protein – ligand atom 

type pairs within a certain range: C, N, O, F, 

P, S, Cl, Br, I

 Training (1105 complexes) and test (195 

complexes) sets have no complexes in 

common

 Results

 significantly better performance than 16 

classical scoring functions

 Performance increases with training set size 

unlike classical scoring functions

Bioinformatics 2010, 9:1169-1175. doi: 10.1093/bioinformatics/btq112



Generic Machine Learning Scoring 

Functions for Binding Affinity

 Other models including Support Vector Regression, Neural Networks, 

Random Forests accounted for intermolecular interactions and 
physio – chemical ligand properties and performed even better

https://openi.nlm.nih.gov/detailedresult.php?img=PMC3877102_pone.0083922.g001&req=4



Family Specific Machine Learning 

Scoring Functions

 Goal is to use Scoring Functions for specific drug targets

 Two ways to pick Scoring Functions for family specific targets from 

general Machine Learning Scoring Functions:

 Pick best performing Scoring Functions on diverse set representing many 

target classes

 Pick best performing Scoring Functions on test set of complexes of 

specific target class

https://en.wikipedia.org/wiki/CHEK1 http://www.phosphosite.org/proteinAction?id=832&showAllSites=true http://necat.chem.cornell.edu/Structures2/3NZK.html

CHK1 ERK2 LpxC



Family Specific Machine Learning 

Scoring Functions

 Building family specific Scoring Functions – allows for more specific 

features to that target class

 Unsure if general or family specific Scoring Functions perform better 

for one target class because complexes from other target classes 

can contribute to performance

MD – SVR for Akt1 Inhibitors

https://openi.nlm.nih.gov/detailedresult.php?img=PMC4201482_pone.0109705.g001&req=4



Machine Learning Scoring 

Functions for Virtual Screening

 Two types of Machine Learning Scoring Functions for virtual 

screening:

 Regression based for ranking molecules – similar to binding affinity 

models

 Classifiers for Virtual Screening – whether molecules will bind, true 

binders vs decoys

 Many models for classifiers including Random Forest, Support Vector 

Machine, Neural Network, Naïve Bayes

http://www.nature.com/nchembio/journal/v6/n5/full/nchembio.354.html?message-global=remove



Machine Learning Scoring 

Functions for Virtual Screening

 Important results from 

experiments

 Importance of tailoring machine 

learning Scoring Functions to 

task (Binding Affinity or Virtual 

Screening)

 Training higher number of 

actives and inactives improves 

performance

http://www.eurekaselect.com/124979/article



Emerging Applications of Machine 

Learning Scoring Functions

 Pose generation

 Molecular Recognition

 Drug lead optimization

 Protein – protein binding affinity Scoring Functions



Limitations

 General summary of machine learning scoring functions, not too 

much detail on specific models

 No mention of performance of pose generation prediction models

and importance to docking compared with scoring

 Feature selection is key for improving performance and is very 

difficult to accurately choose features for models



A Whole New Scorer

Docking predicts binding strength

By using scoring functions

Classical scorers

Are bad so we use machine learning ones

Generic functions work

On many diverse complexes

Better results than classic functions

And improvements with train size

A Whole New Scorer

For predicting binding affinity

Using machine learning

Improves scoring

Applied to virtual screening

A Family Specific

Scoring function for drug targets

Can be from generic ones

Or family specific

With detailed features for that target class

Applied to virtual screening

Can be regression based

Or classifying binders

Models for molecule finders

Like naïve Bayes and neural nets

A Whole New Scorer

For predicting binding affinity

Using machine learning

Improves scoring

Applied to virtual screening for increased accuracyhttps://youtu.be/FSzpEE46PMY?t=21s

http://aladdin.wikia.com/wiki/Genie

https://youtu.be/FSzpEE46PMY?t=21s
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