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What are CNNs?
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Figure 1: recognizing scenes and the system is able to suggest relevant tags



What are CNNs?
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Figure 2: recognizing everyday objects, humans and animals



What are CNNs?
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Figure 3: Architecture for classification

Primary purpose of Convolution:

- Extracting features from the input image while preserving
spatial relationship between pixels.
- Learning image features using small squares of input data.



Convolutional Neural Network for virtual screening
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Figure 4: From CS231n, use of 5 different filters on a 32*32*3 input



We want to learn the weights of the filters to discover features.
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Figure 5: Filters



Goal




Use of Deep Convolutional Neural Networks (CNN) to predict the
bioactivity of small molecules for drug discovery application.

- Apply local convolutional filters to structural target input
information.

- Biochemical interactions are local by nature so should be
well-handled by these sparse ML architectures.

- Predict new active molecules for targets.



Drugs Design techniques




Ligand-based Drug Design

Given a set of diverse ligands that bind to a receptor, the goal is to
create a model of the receptor with this information. It ends up
searching for molecules with shape similar to the ones of known
activities.

Advantages:
- Computationally very efficient
Drawbacks:

- Prevent serendipity in drug discovery



Structured-based Drug design

It involves docking of candidate ligands into a protein target +
scoring function (based on energy) to estimate the likelihood that
the ligand will bind to the protein.



Convolutional Neural Network for
virtual screening




Convolutional Neural Network: Architecture

Network architecture 3D convolutional layers were implemented to support parameters such as
filter size, stride, and padding in a similar fashion to the implementation of Krizhevsky et al. [4].
We used network architecture of an input layer as described above, followed by four convolutional
layers of 128 x 53, 256 x 33, 256 x 33, 256 x 33 (number of filters x filer-dimension), and two
fully-connected layers with 1024 hidden units each, topped by a logistic-regression cost layer over
two activity classes.

Model Training Training the model was done using stochastic gradient descent with the AdaDelta
adaptive learning method [34], the backpropagation algorithm [35], and mini-batches of 768 exam-
ples per gradient step. No attempt was made to optimize meta-parameters except the limitation of
fitting the model into a GPU memory. Training time was about a week on 6 Nvidia-K10 GPUs.

Typically, the cross-entropy loss function is used for trgining a
probabilistic classification:

L(f, (x,¥)) = —ylog(f(x)) — (1 — y)log(1 — f(x)), for y binary.



Method




Input representation

The input representation is a 5 steps process which results in a 1D
vector that is given to the input layer.

1. Find the binding site with a flooding algorithm (exploration
through the surface of the protein)

2. Define a Cartesian 3D grid which center is set to be the
center-of-mass of the binding site.

3. Choose a pose within the binding site cavity.

4. Crop the geometric data to fit within an appropriate bounding
box.

5. Unfold the 3D grid into a 1D floating point vector.

Values: Enumeration of atom types.
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1. The Directory of Useful Decoys Enhanced (DUDE):
- Gather diverse sets of active molecules for a set of target proteins.
- Prevent analogue bias: cluster according to similar active. Take
one representative of each class.
- Each active comes with a set of property matched decoys (PMD,
inactive).

- Benchmark: 102 targets, 22,886 actives (average of 224 actives per
target) + 50 PMD per active.

- Test set: 30 targets

- Training set: remaining 72 targets

2. ChEMBL-20 PMD: another DUDE-like dataset.



Datasets: Limitations

No experimental validation to verify that decoys are actually inactive.
Decoys are chosen topologically very dissimilar from the actives.

The method is blind to cases where shapes of decoys are close to
the ones of actives.



Results




Baseline: Smina

Smina is used as the baseline. It implements an improved empirical
scoring function and minimization.

AUC =05 >06 =07 >08 =09
AtomNet 49 44 36 24 10
ChEMBL-20 PMD Smina 38 10 4 1 0
AtomNet 30 29 27 22 14
DUDE-30 Smina 29 25 14 5 1
AtomNet 102 101 99 88 59
DUDE-102 Smina 96 84 53 17 1
AtomNet 149 136 105 45 10
ChEMBL-20 inactives  Smina 129 81 31 4 0

Table 2: The number of targets on which AtomNet and Smina exceed given AUC thresholds. For
example, on the CHEMBL-20 PMD set, AtomNet achieves an AUC of 0.8 or better for 24 targets
(out of 50 possible targets). ChEMBL-20 PMD contains 50 targets, DUDE-30 contains 30 targets,
DUDE-102 contains 102 targets, and ChEMBL-20 inactives contains 149 targets.

Figure 6:
14



Conclusion




Filters specializations

Apply filter to input data and map the location of biggest magnitude
to the relevant subset of the site of the binding. This subset has
specific chemical functions and the filter is specializing as a detector
of these functions.



PENMES

1. We do not know anything about any validation step to set the
number of hidden layers.

2. We do not know about how the initialization of the weights is
done (usually, it is drawn from a uniform distribution)

3. Why using backpropagation instead of a second order method
like conjugate gradient which could allow for faster
convergence?
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Introduction
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Neural Networks




Neural Networks
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Deep Learning
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Learning Deep Architectures
for Interaction Prediction
In Structure-based Virtual Screening
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In Structure-based
Virtual Screening

STRUCTURE Vs LIGAND




In Structure-based
Virtual Screening
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Problems in Structure-based
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Problems in Structure-based
Virtual Screening

1. Complex chemical space
2. Lack of exhaustive training data

3. High number of false positives
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Challenges
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Results

Table 1: Results on DUD-E benchmark (70%

of data for training and 30% of data for test-
ing) and on DUD benchmark (leave-one-out cross-

validation).
Dataset Method Mean AUC
DUD-E Smina 0.700

AtomNet [14] 0.805
cmpds ECFP + LR 0.904

DUD DeepVS [9] 0.300




Results

Table 1: Results on DUD-E benchmark (70%

of data for training and 30% of data for test-
ing) and on DUD benchmark (leave-one-out cross-

validation).
Dataset Method Mean AUC
DUD-E Smina 0.700

AtomNet [ 14 0.895
cmpds ECFP + LR 0.904
DUD Deep V) |$ 0.300



Results

Method Total AUC Mean AUC (£ std.) AUC > 0.7 AUC > 0.8 AUC > 0.9
AutoDock Vina 0.044 0.691 + 0.147 47 21 4
Smina 0.603 0.704 = 0.138 54 23 4
Ours(ECFP) 0.600 0.551 £ 0.166 21 2 0
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Future

1. More training data

2. More accurate learnable fingerprints
3. Better learning techniques

4. More experimentation

5. Real impact
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Overview

Background

Docking and Classical Scoring Functions

Generic Machine Learning Scoring Functions for Binding Affinity
Family Specific Machine Learning Scoring Functions

Machine Learning Scoring Functions for Virtual Screening
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Emerging Applications of Machine Learning Scoring Functions



Background

» Docking i Molecular Docking

» Scoring
Functions/Binding
Affinity

» Virtual Screening

http://www.intechopen.com/books/protein-engineering-technology-and-application/protein-protein-and-protein-ligand-docking



Docking and Classical Scoring
Functions

» Docking - two steps: pose generation, scoring

» Classical Scoring Functions and limitations
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http://archive.cnx.org/contents/4e7287b0-6c38-4829-abeb-3ae357bbfé0f@10/protein-ligand-docking-including-flexible-receptor-flexible-ligand-docking



Machine Learning Scoring Functions

Can capture more complex and non — linear characteristics
Two applications: binding affinity and virtual screening
Feature selection is very important

vV v v Vv

Many benchmarks and metrics for performance (Pearson
Correlation Coefficient for binding affinity, Enrichment Factor for

virtual screening)
-—

Tralnlng set Tralnlng set Test set
blnding ieatures features
Selected
training and [ model =
selection (Scering function)
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'
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Parformance
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WIREs Comput Mol Sci 2015, 5:405-424. doi: 10.1002/wcms.1225
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Generic Machine Learn
Functions for Binding Aff

RP on new complexes (2013 only)

» Work for many diverse protein
— ligand complexes

» Earliest was Kernal-Partial
Least Squares, showed
nonlinear machine learning
scoring function could
capture functional form of
o]lpleligleReliilalin%

1500 2000 25

R » PDBbind benchmark standard
: & . for comparing performance

WIREs Comput Mol Sci 2015, 5:405-424. doi: 10.1002/wcms.1225



RF - Score

» Random Forest

» Features: number of protein — ligand atom Table 2. Performance of scoring functions on the PDEbind benchmark
type pairs within a certain range: C, N, O, F, Scoring function R R,

P' S' Cl' Br' | RF-5come (0.776
X-Score::HMScore (64
» Training (1105 complexes) and test (195 DrugSeor™® 0569
complexes) sets have no complexes in DSAEL 0545
C O m m O ﬂ EJTBYI-_-: (-5core I:I-l':lf
DS.'.'LFJDI!- IE:I.-'IET-'
> Resulfs GldeSeore XP 07
D&::PMF (445
» significantly better performance than 16 GOLD: ChersSeons 041
classical scoring functions S 0.316
GOLD::GoldScore 0.295
» Performance increases with fraining set size SYBYL-PMF Scom 0.268
SYBYL:F-5core 0216

unlike classical scoring functions

Bioinformatics 2010, 2:1169-1175. doi: 10.1093/biocinformatics/btq112



Generic Machine Learning Scoring
Functions for Binding Affinity

» Other models including Support Vector Regression, Neural Networks,
Random Forests accounted for infermolecular interactions and
physio — chemical ligand properties and performed even better
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https://openi.nim.nih.gov/detailedresult.php2img=PMC3877102_pone.0083922.g001&req=4
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ly Specific Machine Learning
ng Functions

» Goalis to use Scoring Functions for specific drug targets

» Two ways to pick Scoring Functions for family specific targets from
general Machine Learning Scoring Functions:

» Pick best performing Scoring Functions on diverse set representing many
target classes

» Pick best performing Scoring Functions on test set of complexes of

specific target class
CHK1 ERK2

https://en.wikipedia.org/wiki/CHEK http://www.phosphosite.org/proteinAction2id=832&showAllSites=true http://necat.chem.cornell.edu/Structures2/3NZK.html



Family Specific Machine Learning
Scoring Functions

» Building family specific Scoring Functions — allows for more specific
features to that target class

» Unsure if general or family specific Scoring Functions perform better
for one target class because complexes from other target classes
can contribute to performance

MD - SVR for Akt1 Inhibitors

N B

https://openi.nim.nih.gov/detailedresult.php2img=PMC4201482_pone.0109705.g001&req=4



Machine Learning Scoring
Functions for Virtual Screening

» Two types of Machine Learning Scoring Functions for virtual
screening:

» Regression based for ranking molecules — similar to binding affinity
models

» Classifiers for Virtual Screening — whether molecules will bind, true
binders vs decoys

» Many models for classifiers including Random Forest, Support Vector
Machine, Neural Network, Naive Bayes

chEMBL#

http://www.nature.com/nchembio/journal/vé/n5/full/nchembio.354.html2m

essage-global=remove



Machine Learning Scoring
Functions for Virfual Screening

» Important results from
experiments

» Importance of tailoring machine
learning Scoring Functions to

task (Binding Affinity or Virtual g L B edio: Doy
Screening) 3 :elcel::o:; &Idcn(iﬁcution & Scoring
¥ . . Library Preparation processing  Experimental
» Training higher number of B Design & yre-based drug des; Testing
actives and inactives improves " Proparation (<" B iﬁ’éﬁi
performance

http://www.eurekaselect.com/124979/article



Emerging Applications of Machine
Learning Scoring Functions

» Pose generation

» Molecular Recognition

» Drug lead optimization

» Protein — protein binding affinity Scoring Functions



Limitations

» General summary of machine learning scoring functions, not too
much detail on specific models

» No mention of performance of pose generation prediction models
and importance to docking compared with scoring

» Feature selection is key for improving performance and is very
difficult to accurately choose features for models



A Whole New Scorer

Docking predicts binding strength

By using scoring functions

Classical scorers

Are bad so we use machine learning ones

Generic functions work

On many diverse complexes
Better results than classic functions
And improvements with frain size

A Whole New Scorer

For predicting binding affinity
Using machine learning
Improves scoring

Applied to virtual screening

https://youtu.be/FSzpEE46PMY2t=21s

A Family Specific

Scoring function for drug targets

Can be from generic ones

Or family specific

With detailed features for that target class

Applied to virtual screening

Can be regression based

Or classifying binders

Models for molecule finders

Like naive Bayes and neural nets

A Whole New Scorer

For predicting binding affinity

Using machine learning

Improves scoring

Applied to virtual screening for increased accuracy

http://aladdin.wikia.com/wiki/Genie


https://youtu.be/FSzpEE46PMY?t=21s
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