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Hybrid protein-DNA assemblies

» Applications

» Previous Techniques
» DNA scaffold + chemical conjugation
» Many Limitations




Non-covalent co-assemblies

» Goal protein-DNA “wire”
» self-assembly

» Method
» Protein homodimer
» Binds to dsDNA
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Model

Homodimer DNA binding
domain domain
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Choose a protein

Create a homodimer
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Choosing a Protein

Engrailed homeodomain (ENH)
» Binds dsDNA tightly and
specifically

» Highly studied ENH (monomer)

» 3 Helix Structure

Homodimer model
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Create a Homodimer

» Protein-docking algorithm to find homodimer
» ENH as scaffold
» Fast Fourier Transform -- surface complementarity
» Symmetry reduces search space

» Clustering and visual inspection
» Top 200 models by structural similarity

» Computational methods to stabilize side-chain
interactions

(1))

Homodimer model



dualENH

Figure 1 from Paper




Combined dualENH with
dsDNA

Observed self-assembly
using fluorescence
microscopy
Nanoparticles formed
immediately

Figure 2 from Paper



Linear protein-DNA nanowire
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Figure 1 from Paper

Figure 2 from Paper




Multiple Configurations

Figure 4 from Paper




Summary and Future Work

» Created a protein-DNA nanowire that
self-assemblies solely on non-covalent
interactions

» Used previously known computational
methods to create a protein homodimer

» Unexpected result: multiple configurations!

» Next Steps
> DNA origami & aptamers
» DualENH fused to peptide tags




Strengths

» Composition of Paper
» Clearly written

» Breakthrough in the creation of
protein-DNA self-assembly

» Techniques could be applied broadly




Limitations

» Composition of Paper
» Little focus on computation
» How does this improve hybrid assemblies?
» Multiple Configurations
» Affect Structure
» Generalizability




Questions’
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Accurate SHAPE-directed RNA
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RNA Structure Prediction

e Motivation: Essential to understand
RNA'’s ability to form stable
secondary structures (important for Bl ey o
gene expression)

-
Stacking Regior .

-
Multiple Loop

Bulge Loop (left)

NIH




RNA Structure Prediction

d Recursive definition of the best score for a sub-sequence i looks at four possibilities:

Can be computationally S(ir1i-1) s
challenging for complex S Slks1)
structures
f+1 =1 = =
i j i ey i 1= | ik kel ]
Can we also predict 1.ijpair 2. iunpaired  3.junpaired 4. Bifurcation
more complex b | _ : 2 _
Dynamic programming algorithm for all sub-sequences ij, from smallest to largest:
StrUCtureS’ namely G & il_:.- A O € € G G :l_-l- AT E € a G t{l_-; A T € €
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Initialization; recursive fill; traceback; result.
Nature



What is a pseudoknot?

Stem Hairpin Loop Pseudoknot

HE Y
Stie

Bulge Internal Loop Multiloop



Why do we care about pseudoknots?

e Often occur in regions of RNA which

are essential to function
o Large catalytic RNA’s

o  Most riboswitches
m Regions of mMRNA which regulate
gene expression and are essential
for ligand binding

o Inside regulatory elements of viruses,
which they use to break down a host
cell’s metabolism

Figure from paper




RNA Prediction with Pseudoknots

e Pseudoknots are often left out of RNA prediction algorithms

o Challenging to incorporate pseudoknots into algorithms currently used because
they don’t easily fall into the DP framework, can we use lowest free energy models?

o Finding the lowest free energy structure with pseudoknots has been shown to be
an NP-Complete problem (meaning it cannot be solved in polynomial time as a
function of its length)

o  When used, they tend to increase false positives, which require a lot more time to
analyze



RNA Prediction with Pseudoknots

e Pseudoknot prediction is challenging
o Energy models extrapolate from experimental data, and there are few containing
pseudoknots

o The stability of pseudoknots is not fully understood, making it hard to generate
energy models



Previous Work USiI"lg SHAPE (Selective 2'-hydroxyl acylation
analyzed by primer extension)

e Probing technique used to determine stability of local nucleotides
o Measures nucleotide flexibility, and is inversely correlated to base-pairing
m l.e. the higher the SHAPE reactivity, the less likely it is to pair

o  Find SHAPE reactivities and use these as free energy terms and add onto the DP algorithms in
place

AG spiape =m In [SHAPE-F 1] +b.

e Doesn’t take pseudoknots into account




Using SHAPE to make ShapeKnots

e Modify the equation to include the

entropic likelihood of pseudoknots S 3;“
being formed e=65AT | T
e Use the idea that energetically
MNested heli
favorable pseudoknots have small Inine helix o
numbers of the following: " 1,:: 15A
o Single stranded nucleotides
o In-line helices 1

o Nested helices

AG°pk =PI In(¢ SS+f° NE) +P2 In XIL(n)(42), Figur fom paper



Experiments

e Training set of 16 examples (pseudoknotted and

non-pseudoknotted)

o Riboswitches, long RNA strands, RNA’s which were poorly predicted by
previous algorithms

e TJest Set of 6 examples (pseudoknotted and
non-pseudoknotted)



Evaluation Metrics

e Sensitivity

O  “Fraction of base pairs in the the accepted structure predicted correctly”

e Positive Predictive Value (PPV)

o “Fraction of predicted pairs that occur in the accepted structure”



Results
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Figure from paper




conventional, no data ShapeKnots

| t Azoarcus group | intron (214 nts)
Results i
+Z2 L

93% average
sensitivity when
using ShapeKnots
(up from ~72%)

sens: 92% VA
ppv: 96

Fig. 4. Prediction summaries for two large, pseudoknot-containing RNAs.
Structural annotations are as described in Fig. 2.

Figure from paper




Strengths

e Innovative approach on incorporating pseudoknots, hasn’t been done by other
papers

e Looked at a diverse set of RNA with complex structures and evaluate specific
examples in each category

e Discuss the challenges in RNA folding and how they affect results



Critiques

e Paper was intended for an expert in the field; didn’t give a lot of background
on RNA prediction nor on pseudoknots.

e How can we scale these methods?

e Lack of future work they tend to do
o  Only looked at a small subset of examples, how do they plan on expanding this, will their
methods work for other types of RNA structures?



Questions?

Thank youl!



Experiments

e Short Pseudoknotted RNAs
e Large, Complex RNAs
e RNAs with Difficult to Predict Pseudoknots

e RNAs That Do Not Adopt Their Accepted Structures



