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Overview

1.What is “super-resolution”

a. Diffraction
b.STORM

2.Compressed Sensing
a. Applied to STORM

3.Light Sheet Imaging
a. Lattice-Light Sheets



Natural Resolution Limits: Diffraction
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Natural Resolution Limits: Diffraction

For typical cameras
d=122 x A xf#

Raleigh Criterion

For microscopes
A A

" 2nsin@ 2 NA

Abbe diffraction limit

NA is typically 0.1-0.4 for common lenses in air, up to 1.0-1.5 for oil lenses.

iPhone 7:
=1.22 * 650nm * /1.8
=1.4 um

pixels are only 1.22 pm!

Typical Limit:
=500nm/(2 * 1.25)
= 0.2 um = 200nm
Microtubules are ~24nm



STORM: Stochastic Optical Reconstruction Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy

(STORM) provides sub-diffraction-limit image resolution.” Nature
Methods 3.10 (2006)
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STORM: Stochastic Optical Reconstruction Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy

(STORM) provides sub-diffraction-limit image resolution.” Nature
Methods 3.10 (2006)
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STORM: Stochastic Optical Reconstruction

Microscopy

Bates, Blosser, Zhuang. "Short-range spectroscopic ruler based
on a single-molecule optical switch.” Physical review
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STORM: Stochastic Optical Reconstruction
Microscopy

Bates, Blosser, Zhuang. "Short-range spectroscopic ruler based

on a single-molecule optical switch.” Physical review
letter< 94 10 (2007
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STORM: Stochastic Optical Reconstruction
Microscopy

Wolter, Steve, et al. "Real-time computation of subdiffraction-
resolution fluorescence images."” Journal of microscopy 237 .1
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Compressed Sensing (a.k.a. Sparse Sampling)

If your data is “compressible”, you can take just a handful of random
measurements, and, using “simple” math, you can reconstruct your
data (with minimal error and high probability)

Emmanuel Candes and Terence Tao. “Near-optimal signal recovery

from random projections: Universal encoding
strategies?.” arXiv:math/0410542 (2004)

min |[|z|[,, subject to |[Az — 1y, <e.



Compressed Sensing (a.k.a. Sparse Sampling)
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Compressed Sensing (a.k.a. Sparse Sampling)




Compressed Sensing

Duarte, et al. Single-Pixel Imaging via Compressive Sampling. (2008)
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Faster STORM using compressed sensing

Zhu, et al."Faster STORM using compressed sensing.” Nature Methods

(2012)

1. Acquire PSF

2. Get Image

3. Increase Grid

32 x 32 pixels

=l

i

£ 166 nm / pixel £

256 x 256 grids

21 nm / grid

4. Solve CS problem




Faster STORM using compressed sensing

Zhu, et al."Faster STORM using compressed sensing.” Nature Methods
(2012)

Denser Images! Many times denser More precise Faster imaging
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Faster STORM using compressed sensing

Fitting Compressed sensing

100 frames

500 frames







Faster STORM using compressed sensing
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Quantitative Comparison

Sage, Daniel, et al. "Quantitative evaluation of software packages

for single-molecule localization microscopy.” Nature
Methods 12.8 (2015)
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Faster STORM using compressed sensing

Solve
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With
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DAOSTORM

Stetson, Peter B. "DAOPHOT: A computer
program for crowded-field stellar
photometry.” Publications of the
Astronomical Society of the Pacific 99.613
(1987).
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Algorithm schematic diagram

FALCON

Min, Junhong, et al. "FALCON: fast and . . i
unbiased reconstruction of high-density
super-resolution microscopy —

data " Srientifir ronnrtc 4 (7014)

Cwe s wvrevid by # o) T masl wpares o (o 8 Vend W Sag Qe
a C R
| ey N
i N =y -

% —~3 2 TRy e

. 0 o e

4 z 1

“irag .'»-»,“v ‘ ~,;f'?vf"v

b d ; g )

- . - 2 g ™ »

b3 10w & w i ' g

@ i { 2 R e o & {0 5

¥ ' A ; 5 T <

6 A : % : J AP &

- | 3 - Al -

:;! y ¥ B ] n v' ‘P

LOCalai
-




Supplementary Figure: Switching kinetics
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Figure S1. The first-order switching kinetics of the molecular switch. A, The number of
molecules remaining fluorescent as a function of time after the green laser was turned off. A
single exponential fit of the data (solid line) gives kor= 0.4 s'. B, The number of molecules
that were converted back to the fluorescent state as a function of time after the green laser was
turned on. A single exponential fit (solid line) gives the observed rate constant for switching
Cy5 on (Kon obs = 1.1 s™"). Considering the competing actions of the red and green lasers, the
actual rate constant Kk, for switching the dye on by the green laser is equal to Koy obs - Ko Data
in A and B are not from the same experiment.



Abstract

Suppose we are given a vector f in a class F ¢ RN, e.g. a class of digital signals
or digital images. How many linear measurements do we need to make about f to be
able to recover f to within precision € in the Euclidean (£3) metric?

This paper shows that if the objects of interest are sparse in a fixed basis or com-
pressible, then it is possible to reconstruct f to within very high accuracy from a small
number of random measurements by solving a simple linear program. More precisely,
suppose that the nth largest entry of the vector | f| (or of its coefficients in a fixed basis)
obeys |fln) < R- n~'/? where R > 0 and p > 0. Suppose that we take measurements
y = (f. Xp). k=1...., K, where the X;. are N-dimensional Gaussian vectors with in-
dependent standard normal entries. Then for each f obeying the decay estimate above
for some 0 < p < 1 and with overwhelming probability, our reconstruction f*, defined
as the solution to the constraints yx = (f*, Xx) with minimal £; norm, obeys

If = f*lles < Cp- R-(K/logN)™", r=1/p—1/2.

There is a sense in which this result is optimal; it is generally impossible to obtain
a higher accuracy from any set of K measurements whatsoever. The methodology
extends to various other random measurement ensembles; for example, we show that
similar results hold if one observes few randomly sampled Fourier coefficients of f. In
fact, the results are quite general and require only two hypotheses on the measurement
ensemble which are detailed.



STORM: Stochastic Optical Reconstruction
Microscopy

Bates, Blosser, Zhuang. "Short-range spectroscopic ruler based on a single-molecule
optical switch.” Physical review letters 94.10 (2005)
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STORM: Stochastic Optical Reconstruction
Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy
(STORM) provides sub-diffraction-limit image resolution.” Nature

methods 3.10 (2006)
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STORM: Stochastic Optical Reconstruction
Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy

(STORM) provides sub-diffraction-limit image resolution.” Nature
methods 3.10 (2006)
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1.What is “super-resolution”
a. Diffraction
b. STORM
2.Compressed Sensing
a. Applied to STORM
3.Light Sheet Imaging
a. Lattice-Light Sheets



Natural Resolution Limits: Diffraction
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Natural Resolution Limits: Diffraction
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Natural Resolution Limits: Diffraction

For typical cameras

IPhone 7:
d =122« A« f# =1.22 * 650nm * /1.8
=1.4 um
Raleigh Criterion pixels are only 1.22 ym!
For microscopes
A A Typical Limit:
d= onsing 2 NA = 500nm/(2 * 1.25)

= 0.2 ym = 200nm
Microtubules are ~24nm

Abbe diffraction limit

NA is typically 0.1-0.4 for common lenses in air, up to 1.0-1.5 for oil lenses.



STORM: Stochastic Optical Reconstruction Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy (STORM)
provides sub-diffraction-limit image resolution." Nature Methods 3.10 (2006)
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STORM: Stochastic Optical Reconstruction Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy (STORM)
provides sub-diffraction-limit image resolution." Nature Methods 3.10 (2006)

All pixels “on”: 1 reading 100 readings 1000 readings




STORM: Stochastic Optical Reconstruction Microscopy

Bates, Blosser, Zhuang. "Short-range spectroscopic ruler based on a
single-molecule optical switch." Physical review letters 94.10 (2005)
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STORM: Stochastic Optical Reconstruction Microscopy

Bates, Blosser, Zhuang. "Short-range spectroscopic ruler based on a
single-molecule optical switch." Physical review letters 94.10 (2005)
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STORM: Stochastic Optical Reconstruction Microscopy

Wolter, Steve, et al. "Real-time computation of subdiffraction-resolution
fluorescence images." Journal of microscopy 237.1 (2010)




Compressed Sensing (a.k.a. Sparse Sampling)

If your data is “compressible”, you can take just a handful of random
measurements, and, using “simple” math, you can reconstruct your data
(with minimal error and high probability)

Emmanuel Candes and Terence Tao. "Near-optimal signal recovery from
random projections: Universal encoding strategies?." arXiv:math/0410542
(2004)

min ||z||,, subject to |Az —y|s <e
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Compressed Sensing (a.k.a. Sparse Sampling)
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Compressed Sensing

Duarte, et al. Single-Pixel Imaging via Compressive Sampling. (2008)

Reconstruction F——>» Image
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Compressed Sensing

Real Picture CS Reconstruction CS Reconstruction  CS Reconstruction
(65,536 pixels) (3,300 samples) (1,300 samples) (6,500 samples)




Faster STORM using compressed sensing

Zhu, et al."Faster STORM using compressed sensing." Nature Methods (2012)

1. Acquire PSF 2. Get Image 3. Increase Grid 4. Solve CS problem

32 x 32 pixels 256 x 256 grids

166 nm / pixel 21 nm / grid




Faster STORM using compressed sensing

Zhu, et al."Faster STORM using compressed sensing." Nature Methods (2012)

Denser Images! Many times denser More precise Faster imaging
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Faster STORM using compressed sensing

Fitting Compressed sensing

;onventional fluorescence

100 frames

500 frames







Faster STORM using compressed sensing
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Quantitative Comparison

Sage, Daniel, et al. "Quantitative evaluation of software packages for
single-molecule localization microscopy." Nature Methods 12.8 (2015)
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Faster STORM using compressed sensing

Solve
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DAOSTORM

Stetson, Peter B. "DAOPHOT: A computer
program for crowded-field stellar

photometry." Publications of the Astronomical
Society of the Pacific 99.613 (1987).

DAOSTORM schematic’

1. Local maxima in the image are idcnuhod| 5 ’.

as candidate molecules.

2. Multiple PSFs are fit to the image to
produce initlal localizations,

3. The residuals image s nspected for
molecules left out of the inital fit. The
positions of these molecules are added to
the list of localizations from step 2.

4. Multiple PSFs are fit to the original image,
using updated list of candidate melecules
from step 3. This yields a more accurate fit

compared to results in step 2

5. Steps 34 are repeated 4 tmes to
maximise the recall (fraction of detected
molecules). The final data show high recall

and localization precision.




| Algorithm schematic diagram |

F/ \ I—C O N 1. Deconvolution with sparsity priors

A deblurred image is generated by using sparsity-promoting priors (weighted |1 norm)
on a sub-pixel grid.

Deconvolution by using
the weighted |1 penalty

Take a spatial support of
the deblurred image

Min, Junhong, et al. "FALCON: fast and unbiased
reconstruction of high-density super-resolution
microscopy data." Scientific reports 4 (2014)

2. Deconvolution with fixed spatial support
Deconvolution by minimizing the least-squares criterion on a fixed spatial support
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Supplementary Figure: Switching kinetics
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Figure S1. The first-order switching kinetics of the molecular switch. A, The number of
molecules remaining fluorescent as a function of time after the green laser was turned off. A
single exponential fit of the data (solid line) gives kg = 0.4 s™'. B, The number of molecules
that were converted back to the fluorescent state as a function of time after the green laser was
turned on. A single exponential fit (solid line) gives the observed rate constant for switching
Cy5 on (kon obs = 1.1 s™"). Considering the competing actions of the red and green lasers, the
actual rate constant k., for switching the dye on by the green laser 1s equal to kon obs - kofr. Data

in A and B are not from the same experiment.



Abstract

Suppose we are given a vector f in a class F C RY, e.g. a class of digital signals
or digital images. How many linear measurements do we need to make about f to be
able to recover f to within precision € in the Euclidean (¢5) metric?

This paper shows that if the objects of interest are sparse in a fixed basis or com-
pressible, then it is possible to reconstruct f to within very high accuracy from a small
number of random measurements by solving a simple linear program. More precisely,
suppose that the nth largest entry of the vector |f| (or of its coefficients in a fixed basis)
obeys |f|n) < R- n~YP where R > 0 and p > 0. Suppose that we take measurements
v = (f, Xk), Kk =1,..., K, where the X} are N-dimensional Gaussian vectors with in-
dependent standard normal entries. Then for each f obeying the decay estimate above
for some 0 < p < 1 and with overwhelming probability, our reconstruction f*, defined
as the solution to the constraints y, = (f¥, X)) with minimal ¢; norm, obeys

If = f¥lles < Cp- R-(K/log N)™", r=1/p—1/2.

There is a sense in which this result is optimal; it is generally impossible to obtain
a higher accuracy from any set of K measurements whatsoever. The methodology
extends to various other random measurement ensembles; for example, we show that
similar results hold if one observes few randomly sampled Fourier coefficients of f. In
fact, the results are quite general and require only two hypotheses on the measurement
ensemble which are detailed.



STORM: Stochastic Optical Reconstruction Microscopy

Bates, Blosser, Zhuang. "Short-range spectroscopic ruler based on a single-molecule optical
switch." Physical review letters 94.10 (2005)
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Number of molecules

STORM: Stochastic Optical Reconstruction Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy
(STORM) provides sub-diffraction-limit image resolution." Nature

methods 3.10 (2006)
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STORM: Stochastic Optical Reconstruction Microscopy

Rust, Bates, Zhuang. "Stochastic optical reconstruction microscopy
(STORM) provides sub-diffraction-limit image resolution.” Nature
methods 3.10 (2006)

R
¥ R
¥ 5

e %

it




