Introduction:
New methods for solving tough crystal structures

CS/CME/Biophys/BMI 371
Feb. 1, 2017
Ron Dror
X-ray crystallography

• The most common method to determine structures of proteins and other biomolecules
• Basic idea: Get the molecule whose structure you want to determine to form a crystal
• Then shine an intense beam of x-rays through the crystal, giving rise to a “diffraction pattern” (a pattern of spots of varying brightnesses)
The diffraction pattern of a crystal depends on its electron density

- The *electron density* corresponding to the 3D structure of a molecule gives the probability of finding an electron at each point in space
- X-rays bounce off electrons they hit
Relationship between diffraction pattern and electron density

• It turns out that the diffraction pattern is the *Fourier transform* of the electron density
 – Both the electron density and the diffraction pattern are functions of three dimensions (i.e., defined at every point in a 3D volume)
 – Each bright spot in the diffraction pattern corresponds to one sinusoidal component of the electron density
 – The Fourier transform gives a magnitude and a phase (shift) for each sinusoid, but it’s only practical to measure the magnitude, not the phase
 • Brightness of the spot gives the magnitude

• To recover the electron density from the diffraction pattern, one needs to estimate the phases
 – In some cases this is done experimentally
 – In most cases it’s done computationally (at least in part)
Problem 1: Given electron density, estimate atom positions

• This is relevant when phases have been determined experimentally, so that we can easily compute an electron density
• Now the challenge is to figure out where each atom is located
• For high-resolution structures, this is fairly straightforward
• For low-resolution structures, it’s harder.
 – This is the subject of one of Monday’s paper
 – The paper uses a method based on probabilistic graphical models, a machine learning technique
 • Daphne Koller (Stanford) is a pioneer in this area
Problem 2: Given diffraction pattern (with unknown phases), estimate atom positions

- If one doesn’t know the phases (or only knows them approximately), one generally estimates the phases and atom positions simultaneously.
- One usually does this by solving an optimization problem where one tries to pick a structure that:
 - Would give a diffraction pattern similar to that observed experimentally AND
 - Has low energy according to a force field roughly similar to those used for molecular dynamics (e.g., two carbons bonded to one another should be approximately a certain distance apart)
- Monday’s second paper introduces an additional term to this optimization, which favors structures similar to a computational model structure based on structures of related proteins.
 - This makes it possible to solve structures from low-resolution diffraction patterns.
 - From Axel Brunger and Michael Levitt (Stanford)
Background material

• Crystallography slides from CS/CME/BioE/Biophys/BMI 279:

• Probabilistic Graphical Models course on Coursera:
 – https://www.coursera.org/specializations/probabilistic-graphical-models
 – by Daphne Koller, co-founder of Coursera