Neural Network Potentials

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

Smith, Isayev and Roitberg

Sabri Eyuboglu
February 6, 2018
What are Neural Network Potentials?

Neural Network Potentials are statistical learning models that approximate the potential energy of molecular systems.

Why are they significant?

Molecular Dynamics Simulations
Molecular Dynamics Simulations

OBJECTIVE

Simulate the movements of atoms in a molecular system

APPROACH

Use potential energy to determine movement of the atoms in the system

for each time-step:
 Derive forces acting on each atom using potential energy
 Update position and velocity
Potential Energy Function

A function mapping a molecular system’s geometry to its potential energy.

\[\vec{M} \xrightarrow{\text{Potential Energy Function}} E \]

where

- **Molecular Representation**
 - A vector describing the molecular system’s geometry.
 - Elements usually consist of atomic numbers and associated 3D coordinates.

- **Potential Energy**
 - The scalar potential energy of the molecular system.
Potential Energy Function

EXAMPLE

1-Dimensional Molecular Representation for a *Diatomic* Molecule

MOLECULAR REPRESENTATION

Bond Distance, q

$$\vec{G} = \{q\}$$
Potential Energy Function

EXAMPLE

1-Dimensional Molecular Representation for a Diatomic Molecule

MOLECULAR REPRESENTATION

Bond Distance, \(q \)

\[\mathbf{G} = \{ q \} \]

POTENTIAL ENERGY FUNCTION

Energy, \(E \) vs. Bond Distance, \(G - \{ q \} \)
THE PROBLEM

Potential Energy Function Approximation

Real molecular systems require elaborate molecular representations.
Real potential energy functions are very difficult and costly to compute.

MD Simulations require

Fast and Reliable

Potential Energy Function Approximations
Potential Energy Function Approximations

Method that computes the potential energy from a molecular representation

\[\vec{M} \rightarrow \text{Potential Energy Function Approx.} \rightarrow E \]

where

- **Molecular Representation**
 A vector describing the molecular system’s geometry.
 Elements can include atom positions, bond lengths and/or angles.

- **Potential Energy**
 The scalar potential energy of the molecular system.
METHODS OF
Potential Energy Function Approx.

Density Functional Theory (DFT) *ab initio* Methods

Proceed from first principles

ACCURATE **SLOW** **TRANSFERABLE**

Semi-Empirical Methods

Use empirically determined parameters to speed up DFT computation

LESS ACCURATE **FASTER** **TRANSFERABLE**

Empirical Methods

Classical Force Fields and Interatomic Potentials

OFTEN INACCURATE **FAST** **POOR TRANSFERABILITY**
Statistical Learning with Neural Networks

? FAST and ACCURATE and TRANSFERABLE ?
Neural Networks for Regression

Statistical learning models that can learn a very diverse class of real-valued functions

Could it be learned from labeled molecular data?
Regression Unit

\[a = g(\langle \vec{w}, \vec{x} \rangle) \]

\(g \) is some nonlinear function
Neural Networks for Regression

Find optimal weights by minimizing some loss function
Naive Neural Network Potential

Molecular Representation \rightarrow \text{Hidden Layer} \rightarrow \text{Output Layer} \rightarrow \text{Potential Energy}

\begin{align*}
M_1 & \rightarrow \text{Hidden Layer} \\
M_2 & \rightarrow \text{Hidden Layer} \\
M_3 & \rightarrow \text{Hidden Layer} \\
M_4 & \rightarrow \text{Hidden Layer}
\end{align*}

\[\overrightarrow{M} \rightarrow E \]

PROBLEMS
1. Variance to Equivalent Molecules
2. Fixed length for Input Molecular Representation
ANI-1 Neural Network Potential

IDEA: Atomic Decomposition

1. **Decompose** the molecular representation by atom
2. **Decompose** the energy function by atom
ANI-1 Neural Network Potential

Atomic Environment Vectors (AEV)

Decompose molecular representation of the systems total geometry to a sequence of molecular representations capturing the local geometry around an atom

Input: Coordinates of each atom in the system

For each: Atom in the system

Build: One AEV factoring in coordinates and atomic number of nearby atoms
ANI-1 Neural Network Potential

Atomic Environment Vectors (AEV)

Computation of AEV

Atom of Interest

Other Atoms

Local Atoms

Symmetry Functions

AEV

Radial Functions

Angular Functions
ANI-1 Neural Network Potential

Atomic Environment Vectors (AEV)

Source: J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.”
ANI-1 Neural Network Potential

Decomposed Energy Function

Model total energy E as a sum of each atom’s contribution E_i

$$E = \sum_{i=1}^{n} E_i$$

where n is the number of atoms in the molecular system
Naive Architecture

MOLECULAR REPRESENTATION

\[M_1 \]
\[M_2 \]
\[M_3 \]
\[M_4 \]

HIDDEN LAYER

OUTPUT LAYER

POTENTIAL ENERGY

\[\vec{M} \]

\[E \]
ANI-1 Architecture

AEV

Carbon Subnetwork

Atomic Energies

Total Energy

\[\sum \rightarrow E \]

\[E^0_C \]

\[E^1_C \]

\[E^2_O \]
ANI-1 Neural Network Potential

Training the Network

DATA

Use **GDB-8** database of all possible molecules containing up to 8 atoms of H, C, N, and O

Generate likely conformations of each molecule by perturbing the molecule along its normal modes

Compute energy of conformation using **DFT** and label the example

<table>
<thead>
<tr>
<th>Atom Coordinates</th>
<th>DFT Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_1\ y_1\ z_1)\ ...\ (x_n\ y_n\ z_n))</td>
<td>(E)</td>
</tr>
<tr>
<td>((x_1\ y_1\ z_1)\ ...\ (x_n\ y_n\ z_n))</td>
<td>(E)</td>
</tr>
<tr>
<td>((x_1\ y_1\ z_1)\ ...\ (x_n\ y_n\ z_n))</td>
<td>(E)</td>
</tr>
<tr>
<td>((x_1\ y_1\ z_1)\ ...\ (x_n\ y_n\ z_n))</td>
<td>(E)</td>
</tr>
<tr>
<td>((x_1\ y_1\ z_1)\ ...\ (x_n\ y_n\ z_n))</td>
<td>(E)</td>
</tr>
<tr>
<td>((x_1\ y_1\ z_1)\ ...\ (x_n\ y_n\ z_n))</td>
<td>(E)</td>
</tr>
<tr>
<td>((x_1\ y_1\ z_1)\ ...\ (x_n\ y_n\ z_n))</td>
<td>(E)</td>
</tr>
</tbody>
</table>

\(~58k\) Molecules

\(~17.2\text{mil}\) Conformations

\(~17.2\text{mil}\) Labeled Examples
ANI-1 Neural Network Potential

Training the Network

COST FUNCTION

$$C(\vec{E}^{ANI}) = \exp\left(\sum_j \vec{E}_j^{ANI} - \vec{E}_j^{DFT}\right)$$

Find minimize via gradient descent with backpropagation
ANI-1 Neural Network Potential

Testing the Network

Test Set
Molecules containing more than 8 atoms

Methods for Comparison

<table>
<thead>
<tr>
<th>ab initio</th>
<th>Semi-Empirical</th>
<th>NN Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFT</td>
<td>DFTB</td>
<td>CM Representation</td>
</tr>
<tr>
<td></td>
<td>PM1</td>
<td>No AEV Type Diff</td>
</tr>
<tr>
<td></td>
<td>AM1</td>
<td></td>
</tr>
</tbody>
</table>
ANI-1 Neural Network Potential

Testing the Network

- RMSE GDB-8
- RMSE GDB-8+

- ANI-1
- No AEV Diff.
- CM/MLP
ANI-1 Neural Network Potential

Testing the Network

Source: J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.”
ANI-1 Neural Network Potential

Testing the Network

Source: J. S. Smith, O. Isayev, and A. E. Roitberg, “ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost.”
ANI-1 Neural Network Potential

Strengths

Innovative Architecture

Highly Transferable (works on larger molecules)

Outperforms Baseline Neural Network Potentials

Models DFT Very Accurately

SPEED
ANI-1 Neural Network Potential

Limitations

Lacks Theoretical Justification of Atomic Decomposition?

Mimicking DFT, but…
DFT isn’t ground truth

Little to no interpretability of learned function

Only works for C, H, N, O – Scale to more atoms?
Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error

Lydia Hamburg
2/6/2018
Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error

Faster method may be more accurate than traditional method
Calculations of chemical properties are useful in chemistry and biology

Knowledge of electronic and thermodynamic properties enables:
• Prediction of chemical reactivity
• Identification of peaks in spectroscopy data
• Design of dyes and fluorophores
• Materials design
• Drug screening
Nearly all quantum chemistry calculations are approximations

- Schrödinger’s wave equation can’t be solved analytically for more than two particles
- Density Functional Theory (DFT) approximates solution to Schrödinger’s Equation by simplifying the system
- The paper uses data from a hybrid DFT approach called B3LYP (Becke, 3-parameter, Lee-Yang-Parr)
Hybrid DFT (B3LYP) is fast but has flaws

- DFT makes assumptions that intentionally deviate from known quantum theory
- DFT calculations rely on functions that are fit to a limited set of experimental data
- Unable to predict when DFT will fail spectacularly
ML may be able to provide quick quantum chemistry estimates at a higher level of theory

- Density Functional Theory - $O(\sim N^3)$
- B3LYP, Hybrid DFT - $O(\sim N^3)$
- Hartree-Fock Theory - $O(N^2)$
- Coupled-cluster theory - $O(N^6)$
- Configuration interaction - $O(>N^6)$
“We investigated *all* combinations of regressors and representations…”

- No new ideas, but useful large scale benchmark
- Central source for results that might instead have been produced in multiple small slightly-different papers
Molecular representations of dataset

- Coulomb matrix (CM)
- Bag of bonds (BOB)
- Molecular graphs (MG)
- Histograms of distances (HD)
- Histograms of dihedrals (HDAD)
- Bonds, angles, machine learning (BAML)
- Extended connectivity fingerprints (ECFP4)
- Molecular atomic radial angular distribution function (MARAD)
Machine learning regressors

- Bayesian ridge regression (BR)
- Elastic net (EN)
- Neural network (NN)
- Graph convolutions (GC)
- Gated graphs (GG)
- Random forest (RF)
- Kernel ridge regression (KRR)
Study was designed to allow the largest possible training set.
Study was designed to allow the largest possible training set.
Study was designed to allow the largest possible training set

- **Experimental Data**
 - 6k data points

- **Hybrid DFT Calculations**
 - 134k data points

- **Machine Learning of Hybrid DFT Calculations**
 - 134k data points
Study was designed to allow the largest possible training set
Study was designed to allow the largest possible training set

- **Experimental Data**: 6k data points
- **Hybrid DFT Calculations**: 134k data points
- **Machine Learning of Hybrid DFT Calculations**: 134k data points

Report error between data and DFT: 6k data points

Report error between ML and DFT: 134k data points
Study was designed to allow the largest possible training set

- **Experimental Data**: 6k data points
- **Hybrid DFT Calculations**: 134k data points
- **Machine Learning of Hybrid DFT Calculations**: 134k data points
- **Report error between data and DFT**: 6k data points
- **Report error between ML and DFT**: 134k data points
- **Compare errors**
Comparison of errors

- **Experimental Data**
 - 6k data points

- **Hybrid DFT Calculations**
 - 134k data points

- **Machine Learning of Hybrid DFT Calculations**
 - 134k data points

- **Error between data and DFT**
 - 6k data points

- **Error between DFT and ML**
 - 134k data points

\[\geq \]
“ML models could be more accurate than hybrid DFT if...data were available”
Weaknesses

• Not a new concept (but the thoroughness is very satisfying)
• Generalizability unknown: explored $134K/10^{60}$ of chemical space
• Molecules types of interest unlikely to be well represented in training set
• Calculations of higher levels of theory might get faster
• The transitive nature of the conclusion slightly weakens confidence in the findings
Strengths

• Competently and thoroughly explored the space
• Made use of a huge percentage of all of the quantum chemistry data known to mankind
• Great example of a cross-disciplinary collaboration – chemists supplied the descriptions and interpretations, Google did the ML
• Straightforward about shortcomings
Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules

Anvita Gupta
CS371
Free Energy vs Potential Energy

$U(x) \sim$ Potential energy based on exact coordinates of every atom in system (x)
Free Energy vs Potential Energy

\[U(x) \sim \text{Potential energy based on exact coordinates of every atom in system } (x) \]

\[\Delta G \text{ (Free Energy) gives a penalty to macrostates which are statistically unlikely} \]

Goal of Authors: Predict free energy of macromolecular complex
Develop free-energy function based on both **physics modelling** and **statistics** from empirical data
Energy Function Development Pipeline

Modelling
- Pick Terms for Energy Function - Physics and Statistics

Energy ~
\[w^*[\text{electrostatic}] + w^*[\text{bond lengths}] + w^*[\text{protein torsion from PDB}] + ... \]

Training
- Extract terms from training data
- Feature Recovery Benchmarks

\[\text{Atom Pair Distance} = F[\text{Energy(molecule)}] \]

- Optimize Weights for Energy Function

Evaluation
- Scientific Benchmarks

- Docking Scores, etc.

Simplex Optimization
Modelling Energy Function (~100 parameters)

Nonbonding Interactions
- Lennard Jones Potential ○ Improved!
- Coulomb’s Law (Electrostatic)
- Van Der Waal’s
- Hydrogen Bonding

Bonding Terms
- Bond Torsion ○ Improved!
- Bond lengths

Solvation Energy
- Anisotropic (Asymmetric) Solvation Model ○ Improved!

Statistical Terms
- Small Molecule and Macromolecular Data
- $-\log(\text{Prob}) \sim \text{Energy}$
Modelling Energy Function (~100 parameters)

Nonbonding Interactions
- Lennard Jones Potential
 - Improved!
- Coulomb’s Law (Electrostatic)
- Van Der Waal’s

Bonding Terms
- Bond Torsion
 - Improved!
- Bond lengths

\[
E_{\text{total}} = E_{\text{LJ,attractive}} + W_{\text{LJ,repulsive}}E_{\text{LJ,repulsive}} + E_{\text{Coulomb}} + E_{\text{Hbond}}
\]

\[
+ E_{\text{solv,iso}} + E_{\text{solv,aniso}} + W_{\text{dun}}E_{\text{dun}} + W_{\text{rama}}E_{\text{rama}}
\]

\[
+ W_{\text{p,aa,pp}}E_{\text{p,aa,pp}} + W_{\text{bonded}}E_{\text{bonded}} + E_{\text{ref}}
\]

Statistical Energy Terms
- Small Molecule and Macromolecular Data
- \(-\log(\text{Prob})\)

Anisotropic (Asymmetric) Solvation Model
- Improved!
Training Energy Function

- Small Molecule Molecular Force Field Data
- Macromolecule Crystal Structures of Ground States

Energy Function \((wE_1 + wE_2 + \ldots) \)

- Solvation \(\Delta G \) of side-chain analogues
- Monomeric structure discrimination
- ... (omitted)

Feature Recovery Tests

Simplex Optimization
Evaluating Energy Function (Results)

- Divided into test set and training set
- **Decoy Detection**
 - First allow structures to move (relax) in current energy function
- **Improvement of:**
 - 20.8% (36.3% to 57.1%) on training set
 - 14.1% (53.1% to 67.2%) on test set
- **Homology Modeling**
 - Small but consistent improvements when using this energy function with Rosetta

Figure 2. Improvements in monomeric structure prediction from independent tests.
Results: Docking Studies

- Improvements in both protein-protein and protein-ligand docking
- Protein-ligand not used in optimization!
- Demonstrates success in balancing:
 - Nonbonded interaction terms
 - Solvation energy
- Key successes of new function:
 - Correct protein-protein docked pose with smaller buried surface area but more favorable interactions
 - Correct protein-ligand pose with greater solvation energy but more interactions

Left: Correct structure found by optnov15, Right: non-native structure selected by talaris
Results: Various Other Tasks

- Small improvements (on the order of 1 percentage point)
- Better balanced preferences for different amino acids
- R^2 between predicted and experimental ΔΔG improves by 4% to 0.743
- <1% improvement in classification accuracy for stabilizing mutations
- To be expected.
- Improved estimates of heat of vaporization
- Original function not enough weight on nonbonded interaction strength
Key Takeaways

1. Integrated both small molecule force field data and macromolecular structural data to improve energy function

2. Thoroughly evaluated energy function
 a. Results from almost every task Energy Function could be used for
 b. Good benchmarking of all computational software
 c. Tested dualOptE (simplex optimization) on existing energy function to make sure it was performing correctly

3. Good interpretation of cases when new energy function improved upon older energy function
Limitations

1. No standard evaluation on several tasks for benchmarking
2. Conflation of improved energy terms and increased training data
3. “Black magic”
 a. Setting weights for target functions
 b. Statistics/Sources of Training Data
4. Order of 100 parameters
 a. Authors call this a “high dimensional subspace” when nowadays this is not true
5. Important to see: more careful analysis of cases when initial energy function (*talaris*) performed better than new energy function (*opt-nov-15*)
Methods: Overview of Approach

Energy Function Parameters $[E(\Theta)]$

Small Molecule Target Function on Thermodynamic Data

$$F_{\text{thermodynamic}}[E(\Theta)]$$

Structural Protein Target Function

$$F_{\text{structural}}[E(\Theta)]$$

$$F_{\text{total}}[E(\Theta)] = w_{\text{thermodynamic}} F_{\text{thermodynamic}}[E(\Theta)] + w_{\text{structural}} F_{\text{structural}}[E(\Theta)]$$