Introduction: Structure Prediction/Design for Nucleic Acids and Complexes

CS/CME/Biophys/BMI 371
Feb. 13, 2018
Ron Dror
Nucleic acid structure

• Most of the “machines” in the cell are protein-based
• Nucleic acids (DNA and RNA) act primarily as information carriers
• However, they’re not just long threads. They can take on well-defined structure, which is important in two ways:
 – It influences gene expression (the extent to which proteins are produced from the DNA that codes for them)
 – Nucleic acids—especially RNAs—can also act as machines. (Maybe life originated this way.)
Topic 1: Predicting RNA secondary structure

• For RNA “secondary structure” — that is, how the bases pair — is of great interest

http://www.tbi.univie.ac.at/~pkerp/forgi/_images/1y26_ss.png
Predicting secondary structure of RNA pseudo knots

- RNA secondary structure is typically predicted using dynamic programming algorithms that assume all loops are “nested”
- *Pseudoknots* violate this assumption
- One of Thursday’s paper proposes an algorithm to overcome this problem, incorporating information from SHAPE experiments (also used in EteRNA)

http://www.tbi.univie.ac.at/~pkerp/forgi/_images/1y26_ss.png

Topic 2: Predicting RNA 3D structure by evolutionary coupling analysis

- The “coevolution” idea works not only for proteins but also for RNAs:
 - Given sequences of many related RNAs, one can identify pairs of bases that coevolve because they are in physical contact
 - This information helps predict 3D structure

Weinreb et al., Cell 165:963-75, 2016
Topic 3: Design of DNA structures

- DNA has been used previously to design “origami” shapes

Designing a DNA–protein complex

• One of Thursday’s papers describes design of a self-assembling “wire” including repeating protein and DNA units