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The comprehensive reconstruction of cell lineages in complex 
multicellular organisms is a central goal of developmental 
biology. We present an open-source computational framework 
for the segmentation and tracking of cell nuclei with high 
accuracy and speed. We demonstrate its (i) generality by 
reconstructing cell lineages in four-dimensional, terabyte-
sized image data sets of fruit fly, zebrafish and mouse embryos 
acquired with three types of fluorescence microscopes,  
(ii) scalability by analyzing advanced stages of development 
with up to 20,000 cells per time point at 26,000 cells min−1 
on a single computer workstation and (iii) ease of use by 
adjusting only two parameters across all data sets and providing 
visualization and editing tools for efficient data curation. 
Our approach achieves on average 97.0% linkage accuracy 
across all species and imaging modalities. Using our system, 
we performed the first cell lineage reconstruction of early 
Drosophila melanogaster nervous system development, revealing 
neuroblast dynamics throughout an entire embryo.

Following the dynamic behavior of cells in complex organisms, 
such as fruit fly, zebrafish and mouse embryos, is a fundamental 
goal of developmental biology1,2. The ability to accurately recon-
struct the positions, movements and divisions of cells is crucial 
for understanding the morphogenesis of tissues and organs3–6, 
linking developmental history to cell function7, dissecting the 
role of differential gene expression in directing cell-fate deci-
sions8,9, quantitatively analyzing mutant defects10, determining 
stereotypy in cell behavior11 and experimentally testing models 
of development12,13.

State-of-the-art live imaging technologies, such as light-sheet 
and confocal fluorescence microscopes, are capable of recording 
development at the cellular level for several days14. Frequently, 
nucleus-specific fluorescent labels are employed to reveal cellular 
dynamics across cell populations or even entire embryos3,4,15–17. 
Such imaging experiments easily generate terabytes of image data, 
comprising up to tens of thousands of cells imaged for thousands 
of time points. However, existing manual or semiautomated 
approaches to reconstructing cell lineages do not scale to data sets 
of such complexity and size18.
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Automated computational approaches have been developed 
to analyze such image data for small model organisms such as 
Caenorhabditis elegans embryos15 and for early developmental 
stages of more complex organisms such as the early zebrafish blas-
tula19,20 and the Drosophila blastoderm16,20. However, a method 
for accurate, automated cell lineaging in later stages of develop-
ment does not currently exist.

Four major challenges complicate automated cell segmentation 
and tracking in advanced developmental stages. First, image data 
are complex, i.e., the specimen often comprises a large number 
of densely packed cells with different shapes and complex behav-
iors. Second, image quality varies markedly across the specimen 
because of the limited physical penetration depth of the micro-
scope. Third, data sets are large, and thus scalability is indis-
pensable for any general computational approach. Fourth, high 
accuracy and robustness are required, because a few errors can 
fundamentally alter lineage results.

In general, computational approaches to cell segmentation and 
tracking can be divided into three main categories: contour evolu-
tion (for example, level sets)21, state-space models (for example, 
particle filters)22 and data association methods (for example, 
graph matching)20,23. All of these approaches have individual 
strengths and weaknesses, and none solves all of the challenges 
outlined above. For example, contour evolution methods can be 
slow to compute for thousands of three-dimensional (3D) objects, 
but they provide detailed cell outlines, even during cell division. 
State-space models and data association methods do not scale well 
with increasing object density. However, they can model complex 
spatiotemporal knowledge about the system.

Here we present a new hybrid approach to segmenting and 
tracking cell nuclei, which facilitates fast and accurate recon-
struction of cell lineages. Our method operates on three princi-
ples. First, we reduce data size and complexity by using low-level 
segmentation to generate supervoxels. Second, we use paramet-
ric contour evolution, which provides good segmentation and 
tracking results in easy cases. Third, we flag areas where contour 
evolution might have failed and use spatiotemporal local data 
association rules to improve results. This division of labor provides 
higher accuracy and orders-of-magnitude faster computation  
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time compared to existing methods. We also augment our auto-
mated computational pipeline with visualization and editing 
methods to efficiently curate the results and obtain error-free 
reconstructions.

We show that our framework rapidly and accurately recon-
structs cell lineages from large-scale image data sets obtained with 
different microscopy methods and for different model organisms. 
As a case study, we systematically analyzed the lineages and cell 
behavior of neural progenitors in the entire early Drosophila ven-
tral nerve cord.

RESULTS
Automated segmentation and tracking of cell nuclei
We developed an automated computational pipeline to efficiently 
and accurately segment and track cell nuclei in 3D time-lapse 
fluorescence microscopy recordings with terabytes of image data 
(Fig. 1 and Supplementary Software 1). In addition to high accu-
racy, our design goals included scalability, speed and generality.

First, we partitioned the 3D image volume recorded at each 
time point into supervoxels (Fig. 1a). A supervoxel is a con-
nected set of voxels in space that all belong to a single nucleus, 
and each nucleus can be represented by multiple supervoxels. The 
use of supervoxels as the smallest image unit (instead of voxels) 
reduces complexity by approximately three orders of magnitude 
while retaining morphological information24. In addition, we 
applied a conservative global intensity threshold that further 
reduced the data size by at least threefold. By using watershed 
techniques and persistence-based clustering (PBC) agglomera-
tion25,26 (Supplementary Fig. 1 and Online Methods), we created 
a hierarchical representation of all possible partitions of the image 
into supervoxels (Fig. 1a). Thus, only two parameters needed to 
be provided: the global background intensity threshold and the 
level, τ, at which the hierarchical representation is cut to gener-
ate the initial set of supervoxels (Supplementary Software 1). As 
each time point can be processed independently, this processing 
step is trivially parallelized.

Second, we connected supervoxels in space (segmentation) 
and time (tracking) to recover full cell lineages. We developed 
a sequential Bayesian approach with Gaussian mixture models 
(GMMs) to perform both tasks simultaneously using paramet-
ric contour evolution (Fig. 1b, Supplementary Fig. 2, Online 
Methods and Supplementary Note 1). The intensity profile 

of each nucleus can be modeled as a Gaussian distribution in 
3D (Supplementary Fig. 3), and thus each image volume is 
described as a GMM. We applied local background estimation 
to each supervoxel using Otsu’s method27 to tighten the nuclear  
segmentation mask and improve fitting (Online Methods). The 
parametric model reduces the segmentation and tracking problem 
to finding ten parameters per nucleus: its 3D center, 3D covariance 
matrix (shape) and parent identity. Fitting a GMM to image data 
is a well-established estimation problem with efficient computa-
tional solutions28 (Online Methods and Supplementary Note 1).  
The supervoxel image partition is also advantageous in this sec-
ond step: it improves global convergence, processing speed and 
memory efficiency29, as each Gaussian only has to cluster a few 
supervoxels instead of thousands of voxels. Moreover, instead of 
fitting a GMM at each time point independently, we propagated 
the solution obtained for time point t to the next time point,  
t + 1. Because of the temporal coherence between consecutive time 
points, we imposed the a priori knowledge (Bayesian approach) 
that the location, shape and intensity of nuclei cannot change 
abruptly between time points.

Robust detection of cell divisions is a key requirement for the 
reconstruction of cell lineages. However, achieving high accuracy 
for this task is complicated by the sparse occurrence of cell divi-
sions in the image data. To maximize detection accuracy, we again 
took advantage of the supervoxel partition: if two supervoxels 
are clustered into the same Gaussian but are not spatially con-
nected, the cluster is flagged as a cell division candidate (Fig. 1b  
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Figure 1 | Computational framework for nuclei segmentation and tracking. 
Schematic representation of the cell lineage reconstruction pipeline on 
example image data. For simplicity, only 2D slices of the 3D data are 
shown. (a) A hierarchy of possible segmentations (from coarse to fine) 
is calculated from the image data using watershed and PBC. The PBC 
distance threshold, τ, controls the merging of neighboring image regions 
and thereby defines which segmentation in the hierarchical model is 
selected to generate supervoxels. The higher the value of τ (τ1 > τ2),  
the coarser the segmentation, as more image regions are merged.  
(b) A GMM (green ellipsoids) is fit to the gray-scale image data to group 
supervoxels that belong to the same nucleus. For cell tracking, the GMM 
is sequentially propagated forward in time (steps 1 and 2). A module for 
cell division detection (step 3, green compared to gray ellipsoids) is used 
to control the number of objects in the GMM. (c) The algorithm determines 
local spatiotemporal windows in which the sequential GMM model might be 
erroneous; heuristic rules are applied to improve accuracy. (d) The results 
of the automated tracking and segmentation are output into a framework 
for data visualization, editing and annotation. Scale bars, 5 µm.

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature methods  |  VOL.11  NO.9  |  SEPTEMBER 2014  |  953

Articles

and Supplementary Table 1). We then 
analyzed a local spatiotemporal window 
around each flagged object to determine 
whether a true cell division had occurred 
(Fig. 1c). These spatiotemporal windows 
are essential to incorporate informa-
tion to which the sequential GMM model does not have access. 
Within each local window, we used data association approaches 
to cell tracking to consider multiple segmentation and linkage 
hypotheses. The hierarchical segmentation structure (Online 
Methods and Supplementary Fig. 1) is crucial to efficiently 
enumerate all possible solutions. This strategy allowed us to 
accurately reconstruct cellular dynamics in challenging regions 
of the image volume while avoiding an increase in computa-
tional complexity. In particular, we incorporated data associa-
tion heuristic rules that identified background detections and 
corrected false track termination and wrong linkages in the 
sequential GMM (Supplementary Fig. 4, Online Methods and  
Supplementary Note 2).

Performance of the automated cell lineaging pipeline
We assessed the performance of the automated segmentation and 
tracking algorithm across three different model systems (fruit fly, 
zebrafish and mouse embryos) and three different types of fluores-
cence microscopes (a custom SiMView light-sheet microscope16, 

a Carl Zeiss Lightsheet Z.1 microscope and a Carl Zeiss LSM 710 
confocal microscope) (Online Methods). Seven users annotated 
a total of 42,947 ground truth data points to generate accuracy 
metrics for all model systems and microscopes. Moreover, we 
curated 116,820 data points across different developmental stages 
in Drosophila. We adjusted only two parameters of the pipeline, 
the background intensity threshold and the PBC threshold τ, 
across data sets to obtain the results presented in this section 
(Supplementary Software 1 and Supplementary Fig. 5).

First, we analyzed performance on the SiMView data set of 
Drosophila embryonic development in detail (Fig. 2a–e and 
Supplementary Videos 1–6). Because of the complexity of the 
image data and the associated computational challenges (Fig. 2f  
and Supplementary Videos 5 and 6)30, we used several  
complementary metrics to evaluate different types of errors 
(Supplementary Note 3). First, we reported the Euclidean 
distance between manually and automatically marked nuclei 
centroids as a measure of segmentation accuracy. Second, we 
normalized this distance by the nearest neighbor distance to 
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Figure 2 | Automated cell lineaging in 
Drosophila embryos. (a) Left, maximum-
intensity projections of a SiMView recording  
of a nuclei-labeled (His2Av-mRFP1) stage 9  
Drosophila embryo. Right, automated 
reconstruction of cell positions (spheres) and 
movements (lines, last 5 min) using a color 
code that indicates blastoderm lineage origin 
(Supplementary Video 2). The reconstruction 
comprises 501 time points (3–7 h AEL, stages 
6–11). a, anterior; p, posterior. (b) Tracks 
of eight ventral (left) and dorsal (right) S1 
neuroblasts superimposed with images at 4.9 h  
AEL (stage 10). The tracks are 270–450 time 
points long and show cell movements during 
germ band extension. (c) Average linkage 
accuracy (black) and average normalized 
Euclidean distance between automatically and 
manually detected nuclei centroids (green) for 
235 neuroblasts. (d) Average error-free length 
of neuroblast cell lineages (black, median; gray, 
25th and 75th percentiles; n = 262 on average). 
Rapid germ band elongation starts at time  
point 40. (e) Average distance between curated 
and corresponding uncurated cell tracks (black, 
mean; gray, s.d.) measured by backtracking cells 
from time point 250 (stage 10, n = 241 cells). 
Gastrulation starts at time point 0 (stage 6), 
and internalization of neural precursors  
occurs on average at time point 120 (stage 9, 
n = 295). The average nuclei neighbor (NN) 
distance is shown as a reference (green).  
(f) Orthogonal image slices, each centered 
on a nucleus representing a different type of 
image analysis challenge (green, automated 
segmentation results). SNR, signal-to-noise 
ratio. Scale bars, 50 µm (a,b); 10 µm (f).
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account for bias toward oversegmentation.  
Third, we evaluated tracking accuracy 
by determining the fraction of correct 
linkage assignments in consecutive time 
points. The average Euclidean distance was 
below 50% of the nucleus radius, and the average pairwise link-
age accuracy was above 95% for all time points (Supplementary 
Tables 1–3). Image quality, cell density and the magnitude of 
cell movements generally varied across the embryo (Fig. 2e and 
Supplementary Fig. 6) and constituted the most important fac-
tors influencing tracking accuracy (Supplementary Figs. 7 and 8).  
Particularly challenging scenarios included crowded populations 
of internalized cells and fast cell movements Supplementary  
Fig. 6 and 7).

We also measured the average error-free length of cell line-
ages (Fig. 2d), i.e., the number of consecutive time points over 
which we encountered no segmentation or tracking errors. These 
segments, with an average length of 122 time points, were often 
separated by a segmentation mistake that propagated on aver-
age to the next two time points (Supplementary Fig. 9). Such 
mistakes do not propagate indefinitely, as the pipeline is capable 

of self-correction (Supplementary Fig. 6f and Supplementary  
Note 3). Moreover, the majority of cell tracks affected by recon-
struction errors stayed within the median nearest neighbor dis-
tance of the true cell identity, even when cells moved hundreds of 
micrometers over hundreds of time points (for example, during 
Drosophila germ band extension; Fig. 2b,e).

A comparative analysis of the data sets for all biological model 
systems and microscopes (Figs. 2a and 3a–d and Supplementary 
Videos 1–23) showed that the average Euclidian distance 
between manually and automatically determined centroids 
was below the nuclear radius (Fig. 3e,f), and the average link-
age accuracy was between 90% and 99% (Fig. 3g). The mouse 
data set (Fig. 3c and Supplementary Videos 16–18) was an 
exceptionally challenging case because of the crowded cells, low 
temporal sampling, low image contrast and specimen rotation  
over time.
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Figure 3 | Automated cell lineaging in 
zebrafish, fruit fly and mouse embryos using 
various microscopes. (a) Left, maximum-
intensity projection of a 4-h Lightsheet Z.1 
microscopy recording of the ventral half of 
a nuclei-labeled (His2Av-mRFP1) stage 6 
Drosophila embryo. Right, reconstruction of  
cell positions (circles) and movements (lines, 
last ten time points) using random colors.  
501 time points (stages 5–11) were 
reconstructed. (b) As in a but for a 3.4-h 
confocal microscopy recording of a nuclei-
labeled (H2B-mCherry) zebrafish embryo  
during early gastrulation (101 time points  
from 50% epiboly). (c) As in a but for a 2-h 
SiMView microscopy recording of a nuclei-
labeled (H2B–enhanced GFP (eGFP)) mouse 
embryo (26 time points from embryonic day 
(E) 6.25). (d) As in a but for a 13.4-h SiMView 
microscopy recording of a nuclei-labeled  
(H2B-eGFP) zebrafish embryo during late 
gastrulation (801 time points from the sphere 
stage). The radial gradient color code indicates 
the blastoderm lineage origin. c/p, blastoderm 
center/periphery. (e) Average Euclidean 
distance between automatically and manually 
detected nuclei centroids (from left to right: 
n = 1,211; 1,718; 2,408; 2,008; 2,041; 1,436; 
1,330; 1,365; 1,744; 1,998; 1,327; 1,594; 715; 
740; 841; 1,375; 2,655; 2,416; 1,469; 1,210; 
1,369; 1,246; 1,206; 1,219; 1,202; error bars, 
5th and 95th percentile confidence intervals). 
(f) As in e but normalizing individual  
distances to the local nearest-neighbor  
nuclei (NN-norm.) distance (error bars as in e).  
(g) Average linkage accuracy (error bars as in e).  
(h) Scatter plot of cell count versus 
computation time. Computation time scales 
linearly with cell counts (R2 = 0.90, linear 
regression). The average processing speed is 
26,000 cells min−1. Scale bars, 50 µm (a,c);  
100 µm (b,d).
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We then evaluated the processing speed of our pipeline. The 
hybrid approach and parallelization on multicore CPU and 
graphics processing unit (GPU) platforms resulted in a linear 
scaling of computation time with the number of cells tracked 
(Fig. 3h). We measured an average processing speed of 26,000 
cells min−1 on a single computer workstation (Online Methods). 
In all presented scenarios, the computation time was thus sub-
stantially shorter than the image acquisition time (Fig. 3h and  
Supplementary Fig. 10).

Visualization and manual curation of lineaging results
To meet the requirements of applications that demand error-free 
lineage reconstructions, we integrated a module for manual data 
inspection and editing in our reconstruction pipeline (Fig. 1d). 
For this purpose, we extended the CATMAID (Collaborative 
Annotation Toolkit for Massive Amounts of Image Data) plat-
form for neuron tracing in large electron microscopy data sets 
(A. Cardona, Janelia Farm, personal communication)31,32 by 
adding data handling of 3D time-lapse images with multiple 
color channels, orthogonal image slicing and temporal logic 
for enforcing biological constraints during data annotation 
(Supplementary Software 2). We used this module to store, 
curate and annotate the cell lineage data from all reconstructions 
performed in this study, thereby demonstrating its ability to han-
dle multi-terabyte data sets with more than 10 million data points  
(Supplementary Fig. 11).

A novice user was able to curate the entire cell lineage reconstruc-
tion of early Drosophila nervous system development presented 
in the next section (Supplementary Videos 24–28). All editing 
actions were recorded in the database and used to estimate key data 
curation performance metrics (Fig. 4a,b). Within a 24-h period, 
the user reached maximum efficiency and achieved a sustained 
curation rate of 1,395 data points per hour (Fig. 4c). The user per-
formed the full validation and curation of the 116,820 data points 
in approximately 100 h, including the initial training phase.

We also developed an approach for reducing the overall number 
of data points that need to be validated. Our computational  
framework automatically outputs a confidence score for each data 

point (Online Methods) and thereby guides the user to data points 
that are the most likely to be affected by errors (Fig. 4d). By focus-
ing on data points flagged by this error guidance system, inspec-
tion and curation of only 15% of all data points was required to 
correct 97% of all errors in the automated Drosophila nervous 
system reconstruction (Fig. 4d,e). We measured a 28% improve-
ment in data curation speed when using the error guidance system 
(n = 2,332 data points, two annotators) (Online Methods).

Cell lineage reconstruction of the early nervous system
To demonstrate the capabilities of our cell lineaging framework, 
we performed a cell lineage reconstruction of early Drosophila 
nervous system development (Supplementary Videos 24–28)33. 
Neuroblasts, the neural precursors, differentiate from neighbor-
ing blastoderm cells by lateral inhibition and delaminate from 
the surrounding cell sheet34,35. These cells divide asymmetrically 
to self-regenerate and produce a ganglion mother cell (GMC), 
which in turn divides symmetrically to generate two neurons or 
a neuron and a glial cell.

Comprehensive tracking of neuroblasts has so far been tech-
nically impossible. Using our framework, we reconstructed, 
curated and analyzed the cell tracks and divisions of 295 neu-
roblasts (Supplementary Videos 25–27), including 92.4% of 
all neuroblasts in the first delamination wave (S1 neuroblasts). 
We used our data visualization module to identify neuroblasts 
on the basis of their arrangement in a stereotypic array at 4.4 h 
hours after egg laying (AEL; Fig. 5a). We further annotated ten 
neuroblast subtypes on the basis of their relative positions within 
the neuroblast array (Supplementary Fig. 12) using definitions 
from earlier studies36. We followed these neuroblasts backward 
in time to their original location in the blastoderm and forward 
in time through two divisions for S1 neuroblasts and one divi-
sion for S2 neuroblasts (Fig. 5a,b, Supplementary Fig. 13 and 
Online Methods).

To our knowledge, our cell lineage reconstruction, which com-
prises 116,820 fully validated data points (Supplementary Video 28  
and Supplementary Data 1), provides the first single-cell– 
resolution blastoderm fate map for almost all S1 neuroblasts  
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in a Drosophila embryo. This map reveals 
an almost perfect neighborhood pres-
ervation between the ventral neuro-
genic regions in the blastoderm and the  
neuroblast array (Fig. 5c,d).

We also analyzed neuroblast movements and divisions (Figs. 5e  
and 6a,b, Supplementary Figs. 14 and 15 and Supplementary 
Note 4). Control over the cell division angle has been impli-
cated in cell layer formation37, and the first neuroblast divi-
sions are an early stage in the creation of 3D structure from the  
two-dimensional (2D) ectoderm38. We therefore systematically 
analyzed cell division orientation39,40 relative to the local embryo 

surface and the embryo midline. Our results show a preference of 
the newly formed GMCs to come to rest not only deeper but also 
more lateral relative to their sister cells, the self-renewed neuro
blasts (polar angle η = 28 ± 15°, azimuthal angle ψ = 271 ± 65°, 
mean ± s.d., n = 415; Fig. 6c,d and Supplementary Fig. 14).

We then investigated whether different cell types in the early 
nervous system exhibit distinct signatures in their dynamic cell 
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behavior. Using machine learning models (Online Methods), we 
found that four of the ten annotated neuroblast cell types could be 
predicted with high accuracy from their behavior: using informa-
tion primarily about the timing and orientation of cell divisions 
(Fig. 6f), we obtained prediction accuracies of 100% for MP2, 90% 
for 3–2, 79% for 1–1 and 67% for 2–5 neuroblasts (Fig. 6e), which 
are sixfold to tenfold higher than the probability of assigning the 
correct cell identity at random (10%). Notably, the models made 
these predictions without access to the spatial position informa-
tion used for manual neuroblast annotation.

DISCUSSION
The automated cell lineaging framework presented in this study 
has three main strengths. First, its segmentation and tracking 
performance is robust across different biological model systems 
and fluorescence microscopes. Second, only a single computer 
workstation is needed, and computation time scales linearly with 
cell counts. Third, the framework requires adjustment of only 
two parameters and is thus easy to use by non-experts. In addi-
tion, we provide tools for efficient data visualization and editing. 
All software is open source and freely available for download at 
http://www.janelia.org/lab/keller-lab/.

Our performance results suggest that we did not sacrifice 
accuracy for speed, as our pipeline is more accurate and faster 
than state-of-the-art methods for cell lineaging in fluorescence 
microscopy (Supplementary Tables 4–6). In general, previous 
algorithms have been designed for early developmental stages, 
with up to a few thousand cells and low cell density. We found 
that these methods fail to correctly segment densely populated 
regions in more complex developmental stages and/or require a 
computation time that scales nonlinearly with the number of cells 
(Supplementary Note 5).

The fact that the processing speed of the presented pipeline 
exceeds the speed of image acquisition means that our framework 
is in principle suitable for image segmentation and cell tracking 
in real time. This opens up the prospect of building ‘smart micro-
scopes’, in which real-time cell lineage reconstructions are used to 
design interactive experiments. For example, real-time cell track-
ing in the developing embryo could be used for optical manipu-
lation at the single-cell level, as well as for real-time predictions 
of cell type identity on the basis of automatically reconstructed 
morphodynamic cell behavior.

The ability to efficiently perform system-level cell lineaging in 
complex multicellular organisms brings us closer to the funda-
mental goal of reconstructing the developmental building plans 
of vertebrates and higher invertebrates. We envision that the com-
putational framework presented here will enhance the speed and 
accuracy of investigations requiring cell tracking information, 
enable quantitative comparisons of cell lineage reconstructions 
within and across species and provide crucial data for the devel-
opment of computer models of embryonic development.

Methods
Methods and any associated references are available in the online 
version of the paper.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Sample preparation and imaging of Drosophila embryos using 
SiMView microscopy. Drosophila live-imaging experiments 
were performed with embryos homozygous for the nuclear label 
histone 2A-mRFP (w-; P{w[+mC] = His2Av-mRFP1}; +, stock 
number 23560 from the Bloomington Drosophila Stock Center).  
Fluorescently labeled Drosophila embryos were dechorionated  
with 50% sodium hypochlorite solution (Sigma-Aldrich, 
425044) and embedded in 1% low–melting temperature agarose 
(Lonza, SeaPlaque) in a 1.5-mm inner diameter (ID) × 20-mm  
glass capillary (Hilgenberg GmbH). After polymerization, the 
agarose cylinder was extruded just enough to expose the embryo 
outside of the glass capillary. The capillary holding the embryo 
was mounted vertically within the water-filled recording cham-
ber of the SiMView light-sheet microscope16 (temperature,  
21.5 °C) so that the agarose was supported from below with the 
dorsal and ventral sides of the embryo facing the cameras. RFP was 
excited with scanned light sheets3 using a 594-nm laser. Emitted 
light was imaged with Nikon 16×/0.8 numerical aperture (NA) 
water immersion objectives, 594-nm long-pass detection filters 
(Semrock) and Hamamatsu Orca Flash 4.0 sCMOS cameras (lateral  
pixel size in the acquired images, 406 nm). Using bidirectional 
illumination and bidirectional detection16, four complementary 
views of the embryo were recorded. Image stacks of 154 planes 
encompassing the entire volume of the embryo with an axial step 
size of 2.03 µm were acquired at 30-s intervals for all four views.

The experiment shown in Supplementary Video 1 captured 
Drosophila development in 2,881 time points for a 24-h period 
from 2.9 h AEL to larval hatching. Each multifused image stack 
is 183 Mb, resulting in a total data set size of 515 Gb.

Sample preparation and imaging of Drosophila embryos using 
a Lightsheet Z.1 microscope. Drosophila embryos imaged with 
the Lightsheet Z.1 (Carl Zeiss) commercial light-sheet microscope 
had the same genotype as the Drosophila embryos imaged with the 
SiMView microscope. Embryos were embedded in 1% low–melting 
temperature agarose in a 1.2-mm ID glass capillary. The polym-
erized gel was extruded to expose the embryo, and the capillary 
was mounted in the microscope so that the agarose cylinder was 
supported from above. In this microscope, the histone 2A-mRFP 
nuclear label was excited with a 561-nm light sheet and imaged 
with a Plan Apochromat 20×/1.0 NA water immersion objective 
(Carl Zeiss), a 585-nm long-pass detection filter and a PCO.edge 
sCMOS camera (lateral pixel size in the acquired images, 333 nm). 
The embryo was oriented so that the ventral side faced the camera. 
In order to image the ventral and dorsal hemispheres, the embryo 
was rotated by 180° between successive volume acquisitions. Each 
image stack contained 124 planes with an axial step size of 2.03 µm.  
Both views, ventral and dorsal, were acquired at 30-s intervals. 
Note that in order to avoid fusion artifacts arising from sequential 
multiview imaging, the dorsal and ventral image stacks were not 
fused in the subsequent image processing, and cell dynamics were 
only reconstructed for the ventral half of the embryo (Fig. 3a). 
This is in contrast to SiMView microscopy (as described above), 
where two cameras capture images of the dorsal and ventral sides 
simultaneously, and dorsal and ventral image stacks are readily 
fused without fusion artifacts16.

The experiment shown in Supplementary Video 7 captured 
Drosophila development in 1,304 time points for an 11-h period 

from 2 to 13 h AEL. Each single-view image stack is 228 Mb, 
resulting in a total data set size of 595 Gb.

Sample preparation and imaging of zebrafish embryos using 
SiMView microscopy. Zebrafish-line maintenance and SiMView 
experiments were performed according to the Institutional Animal 
Care and Use Committee of Janelia Farm (Howard Hughes Medical 
Institute). Fluorescently labeled zebrafish embryos imaged on the 
SiMView microscope were heterozygous for the nuclear label H2B-
GFP expressed under the control of the β-actin promoter. Embryos 
were embedded in a 2.0-mm ID glass capillary filled with 0.5% 
low–melting temperature agarose prepared in E3 buffer (for 60× 
stock solution, 34.8 g NaCl, 1.6 g KCl, 5.8 g CaCl2 × 2H2O and 9.78 
g MgSO4 × 6H2O are dissolved in 2 l H2O, then the pH is adjusted to 
7.2 with NaOH, and finally the solution is autoclaved). The polymer-
ized agarose cylinder was extruded from the capillary to expose the 
embryo outside of the glass. The recording chamber of the micro-
scope was filled with E3 buffer and equilibrated to a temperature of 
21.5 °C. The capillary was then mounted vertically in the recording 
chamber so that the agarose was supported from below with the 
animal and vegetal poles of the embryo facing the cameras. GFP 
was excited with scanned light sheets using a 488-nm laser, and 
the images were acquired with Nikon 16×/0.8 NA water immer-
sion objectives, 525/50-nm band-pass detection filters (Semrock) 
and Hamamatsu Orca Flash 4.0 sCMOS cameras (lateral pixel size 
in the acquired images, 406 nm). Using bidirectional illumination 
and bidirectional detection16, four complementary views of the 
embryo were recorded. Image stacks of 262 planes encompassing 
the entire volume of the embryo with an axial step size of 3.25 µm  
were acquired at 60-s intervals for all four views.

The experiment shown in Supplementary Video 19 captured 
zebrafish development in 1,170 time points for an 18-h period 
starting at the sphere stage at 6 hours post-fertilization (hpf). 
Each multifused image stack is 1.5 Gb, resulting in a total data 
set size of 1.7 Tb.

Sample preparation and imaging of zebrafish embryos using 
confocal microscopy. Zebrafish-line maintenance and confo-
cal microscopy experiments were performed according to the 
Institutional Animal Care and Use Committee of Janelia Farm 
(Howard Hughes Medical Institute). Zebrafish embryos imaged 
with the Carl Zeiss LSM 710 laser-scanning confocal microscope 
were heterozygous for the fluorescent nuclear label H2B-mCherry 
expressed under the control of the β-actin promoter. Embryos 
were mounted in a deep-well microscope slide, embedded in 
0.4% low–melting temperature agarose prepared in E3 buffer 
and covered with a #1 coverslip. The embryos were oriented so 
that the animal pole was nearest the cover slip. mCherry was 
excited with a 561-nm laser, and images were acquired with a Plan 
Apochromat 20×/0.8 NA air objective (Carl Zeiss). The lateral 
pixel size in the acquired images (1,024 × 1,024 pixels each) was 
590 nm. Each image stack contained 35 planes with an axial step 
size of 3.25 µm, which covered about 15% of the volume of the 
embryo. Each plane was imaged in approximately 2 s, and image 
stacks were acquired at 2-min intervals.

The experiment shown in Supplementary Video 12 captured 
zebrafish development in 101 time points for a 3.4-h period (tem-
perature, 21.5 °C) starting at the 50%-epiboly stage. Each image 
stack is 96 Mb, resulting in a total data set size of 9.4 Gb.
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Sample preparation and imaging of mouse embryos using 
SiMView microscopy. Mouse line maintenance and SiMView 
experiments were performed according to the Institutional 
Animal Care and Use Committee of Janelia Farm (Howard Hughes 
Medical Institute). Mouse embryos were obtained from natural 
matings by crossing female CD-1 mice with male CAG-TAG1 
mice41 maintained on a C57BL/6J background. Embryos were 
dissected at E5.5 in DMEM and F-12 (Invitrogen, 21041-025)  
and 10% FBS (Invitrogen, 10082-147) and imaged in DMEM 
and F-12 and 50% rat serum (WEC, Harlan) and maintained at 
37 °C, 5% CO2 and 5% O2 on the SiMView light-sheet micro-
scope as described above. Using bidirectional illumination and  
bidirectional detection16, four complementary views of the 
embryo were recorded. Nuclei expressing histone 2B-eGFP from 
the CAG-TAG transgene were imaged using a 488-nm laser for 
fluorescence excitation, providing image stacks containing 356 
planes with a step size of 2.03 µm every 5 min.

The experiment shown in Supplementary Video 16 captured 
mouse development at E6.25 in 26 time points for a 2-h period. 
Each multifused image stack is 332 Mb, resulting in a total data 
set size of 8.4 Gb.

Multiview image fusion and data handling of SiMView micro-
scopy data sets. SiMView four-view image data sets were pro
cessed and fused with our SiMView image processing pipeline, as 
described previously16. For efficient long-term data storage, back-
ground regions in the image stacks were removed using an image 
mask generated by adaptive thresholding of the Gauss-convolved 
image volume using a conservative threshold setting and retain-
ing all foreground regions in the image volume. The foreground 
regions were subsequently compressed using lossless 3D wavelet 
compression following the JPEG2000 standard. The combined 
effect of these two post-processing steps is data reduction by a fac-
tor of 10 to 100 without affecting image quality or data sampling 
in any foreground region of the raw volumetric image data set. 
Together with the fourfold data size reduction in the multiview 
fusion process, total lossless data compression ratios are thus on 
the order of 40:1 to 400:1 compared to the raw, unfused SiMView 
image data, enabling efficient routine acquisition and storage of 
multi-terabyte SiMView image data sets.

Components of the processing workstation used for all cell lin-
eage reconstructions. All computational reconstructions were 
performed on a single computer workstation with the following 
hardware components: two Intel Xeon E5-2687W CPUs, 192 GB 
DDR3 memory, an Nvidia Tesla Kepler K20 GPU, six Seagate 
Savvio 10K.5 ST9900805SS hard disks combined in a RAID-6 
disk array and an Intel RMS25CB080 RAID module. For optimal 
processing speed in the cell lineaging framework, a good GPU and 
sufficient memory are of primary importance. The Tesla GPU can 
be replaced by a lower-cost GeForce GTX Titan GPU with little 
impact on performance. For a particularly cost-efficient build, 
slower CPUs and hard disks will generally suffice, as these com-
ponents will only have a minor impact on processing speed.

For data visualization, editing and annotation, a CATMAID 
server with the following hardware components was used: two 
Intel Xeon E5-2690 CPUs, 128 GB DDR3 memory, six Intel 
520 Series 480 GB SSDs combined in a RAID-6 disk array, 
an Intel RMS25CB080 RAID module and an Intel X520-SR1 

10Gb fiber network adapter. In this case as well, slower CPUs 
and storage hardware will generally only have a minor impact  
on performance.

Supervoxel formation with watershed persistence-based 
agglomeration. We used a modified watershed algorithm26 to 
group voxels into coherent regions belonging to the same nucleus. 
We incorporated three modifications to the classical watershed 
algorithm in order to avoid excessive oversegmentation due to 
Poisson noise in the light microscopy images. First, we preproc-
essed each 2D image in the 3D image stack with a 5 × 5 median 
filter. Second, we considered an anisotropic neighborhood of  
2 × 2 × 1 (74 elements in total) to avoid an overabundance of local 
minima. Third, and most importantly, we use an agglomeration 
technique based on PBC25 to merge regions extracted from the 
watershed approach. The number of merged regions is defined by 
a parameter, τ. If the difference between the minimum intensity in 
a region and the intensity at the contact point with another region 
is below τ, then these two regions are merged. The merging has 
to be performed sequentially, as each merge affects other pos-
sible merges of neighboring regions (Supplementary Fig. 1). At 
negligible computational cost25, we constructed a binary tree with 
all possible segmentations for all possible values of τ. This hier-
archical segmentation was used to split and merge supervoxels  
during run time. Initially, τ should be set conservatively by the 
user (Supplementary Software 1) to avoid undersegmentation.

Sequential Gaussian mixture model. We modeled the inten-
sity profile of each nucleus as a 3D Gaussian bell-shaped curve 
(Supplementary Fig. 3). The complete volumetric image data at 
each time point t was then modeled as a GMM:

I n xt
k
t

n k
t

k
t

k
Kt[ ] ( ; , )∝ =∑ π µN Σ1

where Kt is the number of nuclei at time t, xn are the 3D coordi-
nates for the nth voxel, and π µk

t
k
t,  and Σk

t  define the kth Gaussian 
mixture at time t. Because information between two consecu-
tive time points is correlated, we used a full Bayesian approach 
(Supplementary Note 1) in order to incorporate priors for each 
parameter in equation (1). In particular, three hyperparameters 
(α, β and ν) define the distributions that model the expected 
changes in intensity, mean location and shape (covariance), 
respectively, between consecutive time points. The larger the val-
ues of these hyperparameters, the more weight is given to each 
prior at time point t in order to estimate parameters at time point 
t + 1. For all data sets presented in this work, these parameters 
were set to α = 0.8 × 10−5, β = 0.1 and ν = 1.0.

The linkage of objects between time points (tracking informa-
tion) is automatically obtained by following the evolution of a 
Gaussian in time. In order to handle cell divisions, we first solved 
equation (1) with a fixed Kt (although Gaussians can be removed 
if they occupy an image volume with low sum intensity). Then, we 
determined which Gaussians might contain two nuclei and split 
them into two Gaussians. Finally, we solved equation (1) again 
with the new value of Kt obtained by estimating cell divisions.

Initialization for tracking and segmentation. Because we did not 
have prior information at the first time point, we initialized the 
GMM with one Gaussian per supervoxel. The variational inference  

(1)(1)
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solving equation (1) and the temporal logic rules successfully 
disregard excess Gaussians resulting from oversegmentation.

Detection of cell divisions. To detect cell divisions, we deter-
mined whether all supervoxels assigned to the same Gaussian 
formed a single connected region after applying Otsu’s thresh-
old27 to each supervoxel individually. If multiple unconnected 
regions existed, we split the group of supervoxels into subgroups 
corresponding to connected components and assigned one new 
Gaussian to each subgroup. This split mechanism is important to 
detect true biological cell divisions as well as to correct grouping 
mistakes that occurred at an earlier time point. Ensuring that 
Gaussians never contain multiple unconnected supervoxels is 
generally important to prevent individual Gaussians from cover-
ing large regions of the image volume.

In order to avoid degenerate cases in the Otsu’s thresholding 
process (for example, all voxels belonging to foreground or vice 
versa), we defined three advanced parameters. minNucleiSize 
defines the minimum number of voxels that should be considered 
foreground. If fewer voxels than minNucleiSize are foreground, 
the entire supervoxel is considered background. maxNucleiSize 
defines the maximum number of voxels (on an absolute scale) 
that are allowed to be considered as foreground, and maxPer-
centileTrimSV defines this limit on a relative scale with respect 
to the total number of voxels in the current supervoxel. For all 
experiments presented in this work, these three parameters were 
kept constant at minNucleiSize = 50, maxNucleiSize = 3000 and 
maxPercentileTrimSV = 0.4. However, these parameters can  
be modified in the advanced parameters section of the software 
configuration file (Supplementary Software 1).

Spatiotemporal context rules. The sequential GMM only incor-
porates first-order Markovian information. However, when 
performing cell tracking, we have further a priori temporal infor-
mation on cell behavior that we can exploit. For example, after 
a cell division, the daughter cells should not divide again for a 
certain number of time points. Thus, we defined three temporal 
logic rules that are applied using a sliding time window over the 
last T time points processed in the sequential approach. For all 
experiments presented in this work, we used a temporal window 
of size ten.

Applying these combinatorial rules to all cells, however, is 
unnecessary, because usually only a small fraction of cells exhibits  
challenging dynamic behaviors at any given time point. Broad 
application of these rules would also consume large amounts of 
computational resources. Thus, we only applied combinatorial 
rules in critical cell lineaging events, mainly cell deaths and cell 
divisions. These events typically occurred for less than 3% of all 
cells per time point and were locally isolated in space.

We refer to the first rule as ‘short-lived daughter’. Many cell divi-
sions are artifacts due to spurious changes in image data appear-
ance between consecutive time points that affect the coherence 
of supervoxels across time. For example, changes in fluorescence 
intensity, scattering effects or autofluorescent elements can pro-
duce a scenario that resembles a cell division event. However, 
these effects are temporary, and one of the tracks will die shortly 
after such a misdetection. We therefore eliminated any track that 
ended within L time points after the last cell division. For all 
reconstructions in this work, L was set to 5.

The second heuristic is ‘track death extension with hierarchical 
segmentation’. Because we set a global parameter, τ, for the persist-
ence-based clustering of watershed regions, undersegmentation 
can occur in low-contrast or crowded image regions (at a rate well 
below 1%). Undersegmentation at a given time point results in a 
cell death in the reconstruction, as the corresponding Gaussian 
cannot be propagated in time. Thus, for each ending track,  
we determined whether neighboring supervoxels in the next time 
point could be split into smaller regions. We used our hierarchical  
segmentation to formulate a local graph-matching problem 
between different possible levels of segmentation across time. 
The weights between edges corresponded to Jaccard distances 
between supervoxels, and the graph-matching problem could thus 
be solved efficiently using the Hungarian algorithm42.

The third rule is ‘distance of mother cell to division plane’. 
In order to determine incorrectly detected cell divisions (false 
positives), we considered that the dividing mother cell is usu-
ally located in between the two daughter cells. We calculated 
the plane equidistant to the centroids of the two daughters and 
computed the distance of the mother cell to this plane. For true 
cell divisions, this metric yields relatively low values, whereas for 
false positives, such as a recovery from undersegmentation, this 
metric typically yields relatively high values. Thus, to discrimi-
nate between true cell divisions and false positives, we defined 
a threshold (Supplementary Software 1) and broke the linkage 
between mother and the more distant daughter for any cell divi-
sion with a distance of mother to division plane above this thresh-
old. After analyzing a small training set, the threshold was set to 
3.2 for all reconstructions in this study.

The fourth rule is a background detector, which will be 
explained in the next subsection.

Background detector. Modeling the gray-scale intensity informa-
tion of each image volume as a GMM implies that all image parts 
with nonzero intensity levels need to be accounted for. However, 
some specimens contain many autofluorescent parts that do 
not correspond to nuclei. Therefore, we built a machine learn-
ing classifier for detecting background objects that uses several 
features within the same temporal windows used to evaluate the 
logic rules (Supplementary Note 2). In general, the properties of 
background objects are not coherent over short periods of time, 
in contrast to those of actual cell nuclei. The background detec-
tor, which takes advantage of these differences, is provided as an 
optional post-processing module in the cell lineaging pipeline. 
Note that all quality metrics presented in this study were evaluated 
before applying the background detector. We used a two-thresh-
old hysteresis approach (thrHigh and thrLow) on the outcome 
of the classifier probability to remove tracks corresponding to 
autofluorescent structures instead of true cell nuclei. When the 
classifier detects an object with a background probability above 
thrHigh, it keeps deleting connected data points forward in time 
until the probability decreases below thrLow or until it encoun-
ters a cell division event. For all post-processed reconstructions 
presented in this work (Supplementary Videos 2, 8, 13 and 20), 
thrHigh was set to 0.7 and thrLow was set to 0.2 unless otherwise 
indicated. The value of thrHigh represents a tradeoff between the 
number of false positives and number of false negatives and can 
be changed in the advanced parameters section of the software 
configuration file.
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Confidence score for guiding users to possible lineaging mis-
takes. Some of the prior information on temporal cell behavior 
can be used to detect possible mistakes in the cell lineage recon-
struction, even if it is not straightforward to automatically correct 
such mistakes without affecting other correct lineages. Thus, in 
those cases where we estimated a high error probability but could 
find a spatiotemporal context rule to fix the issue, we labeled the 
output lineage data accordingly. Using this information and the 
CATMAID data curation interface, the user can be efficiently 
directed to local spatiotemporal windows that are likely to contain 
mistakes (Fig. 4d,e).

In particular, we used two simple rules to flag data points that 
should be manually revisited. First, we flagged all cell divisions 
and cell deaths, as these are rare events with high importance for 
an accurate cell lineage reconstruction. Second, we estimated the 
mean and s.d. of cell displacements at each time point. We used 
these statistics to flag trajectories with unusually large displace-
ments (above 4 s.d.), indicating abnormal cell behavior.

Data curation time with the error guidance system. In order to 
estimate the improvement in curation time obtained using the 
error guidance system, we randomly selected neuroblast line-
ages from our reconstruction of early Drosophila nervous system 
development (Fig. 5b) at time point 200. The annotators then 
proceeded to curate the selected lineages backwards in time until 
reaching time point 0 using both curation methods presented 
in the main text: (i) a computer-guided curation using the error 
guided system, followed by (ii) a full curation with CATMAID. 
We implemented the error guidance system in CATMAID by 
introducing a hot key (‘c’) that directs the user to the next pre-
dicted low-confidence region for manual data curation. Each time 
an annotator started curating a new lineage, we measured the time 
that elapsed until the completion of data curation for the respec-
tive lineage. Using this methodology, two different annotators 
reconstructed a total of 12 lineages with both curation methods. 
The total time required in full curation mode was 1,625 s com-
pared to 1,169 s using the error guidance system. This number 
shows a 28% improvement in data curation speed with the error 
guidance system. The annotators corrected a total of 34 mistakes 
using the full curation mode and 32 mistakes using the error 
guidance system.

Nervous system reconstruction. Neuroblasts were morphologi-
cally identified in the image data at a time point after delamina-
tion for each wave (Supplementary Video 24). The automatically 
tracked paths were proofread forward and backward in time 
(Supplementary Videos 25–27) so that the first asymmetric divi-
sions were found wherever the cells could be followed unambigu-
ously. Relative positions of neuroblasts based on literature were 
used to assign putative cell identities (Supplementary Fig. 12). 
Features of the paths taken by these cells, including internaliza-
tion time point, resting depth of the nucleus, maximal migra-
tion velocity, path length to the resting point, time point of cell 
divisions and division angles, were calculated from annotated  
nucleus locations.

In order to describe the location of the embryo surface, which 
is required for definitions of several dynamic features, we con-
structed the 3D convex hulls of all nuclei at each time point. Body 
axes in the anterior-posterior, medial-lateral and ventral-dorsal 

directions were manually aligned for the initial time point and 
adjusted using the iterative closest point algorithm to correct for 
gradual drift of the specimen.

For the visualization of neuroblast patterns along the length 
of the germ band, we defined cylindrical coordinates (z, φ) with 
z, the transverse axis coordinate, and φ, the polar angle running 
from the ventral side, around the posterior tip at φ = 0 up to the 
dorsal side.

In order to efficiently calculate the distance between each point 
and the convex hull, we first used a 3D k-d tree to store the points 
on the hull. On this structure, we found the k nearest neighbors. 
We found the triangles containing these points and calculated the 
distance from the point to the plane containing each triangle as

d p
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The distance from the neuroblast to the convex hull over time 
through the course of delamination follows a characteristic shape, 
reflecting an internalization phase between the embryo surface 
phase and the delaminated phase. A logistic fit of the form

d t d d

e
fit t t( ) ( / )= +

+ − −0 1 21
∞

µ

was used to incorporate the global behavior of the trajectory to 
robustly identify the geometric center of the descent to identify a 
time point of delamination. Notably, this fit shows considerably 
better performance than a simple threshold criterion and defines 
both delamination depth (d) and internalization time (t1/2). Note 
that the nuclear label does not allow us to discuss canonically 
defined ‘delamination’ but only internalization of the nucleus,  
as the nucleus moves basally before the segregation of the  
neuroblast from the outer cell sheet.

In order to fully parameterize the asymmetric neuroblast divi-
sion orientation, we calculated two spherical angles. Because 
neuroblasts divide approximately orthogonally to the outer cell 
sheet, one axis of the cell division coordinate system was defined 
along the local surface normal. The other axis was chosen as the 
transverse body axis projected onto the plane locally tangent 
to the surface. The origin for each division angle coordinate 
system was placed in the GMC daughter cell, identified as the 
one further from the embryo surface. The polar angle was then  
calculated as

ˆ arccos(ˆ ˆ)a η = ⋅n r

for the unit surface normal n̂  and the unit vector between  
daughter cells r̂ . The second, azimuthal angle was calculated as
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where f̂  and ẑ  are the angular and radial unit vectors of the cylin-
drical coordinate system (Fig. 5a). The angle ψ was then reflected 
across the midline and the posterior tip of the egg to account for 
bilateral symmetry as well as the change in orientation of the germ 
band. Thus, the coordinate system is consistently defined relative 
to lateral and medial directions as well as relative to the direc-
tionality of the germ band. Because the neuroblasts are located 

(2)(2)

(3)(3)

(4)(4)

(5)(5)
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on the germ band, away from the lateral surfaces of the embryo, 
the transverse axis will contain a large component within the 
tangent plane, and thus the projection will remain robust. Final 
angles were calculated by averaging the vector between daughter 
cells between the first two time points. The calculation remained 
robust when averaging one to three time points (data not shown). 
We note that the limited spatial resolution in the dorsoventral 
direction (2 µm) created an up to 10% uncertainty in the angle 
calculations.

Predicting neuroblast type and transcription factor annota-
tions using machine learning. We used the Matlab implemen-
tation of boosting with classification trees to learn models that 
can predict neuroblast type or transcription factor annotations 
on the basis of the morphodynamic features obtained from our 
cell lineage reconstruction. Because our data set contained only 
295 samples (total number of neuroblasts in the cell lineage 

reconstruction), we used fivefold crossvalidation and 500 weak 
classifiers to estimate the prediction accuracy results. Each weak 
classifier in the boosting model was grown and then pruned until 
each leaf had at least five samples, and we used the surrogate tech-
niques implemented in Matlab to accommodate missing values 
for cells that were not tracked up to the second cell division. The 
feature importance for each model was returned by Matlab in 
the same boosting function. For each tree, the importance was 
calculated by summing changes in the risk due to splits on every 
feature and dividing the sum by the number of branch nodes.

41.	 Trichas, G., Begbie, J. & Srinivas, S. Use of the viral 2A peptide for 
bicistronic expression in transgenic mice. BMC Biol. 6, 40 (2008).

42.	 Kuhn, H.W. The Hungarian method for the assignment problem.  
Nav. Res. Log. Quart. 2, 83–97 (1955).
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Erratum: Fast, accurate reconstruction of cell lineages from large-scale 
fluorescence microscopy data
Fernando Amat, William Lemon, Daniel P Mossing, Katie McDole, Yinan Wan, Kristin Branson, Eugene W Myers & Philipp J Keller
Nat. Methods; doi:10.1038/nmeth.3036; published online 20 July 2014; corrected online 14 August 2014

In the version of this article initially published online, equation (2) in the Online Methods, which describes the expression used to calculate 
the distance between the location of a nucleus (p0) and the plane defined by the vertices of a triangle on the convex hull (p1, p2 and p3), was 
incorrect. The operations between the positions of the nucleus and triangle vertices (p0, p1, p2 and p3) were incorrectly shown as a scalar 
product. The correct operation is a subtraction. The operations between the pairwise differences of the positions of the triangle vertices (p1, 
p2 and p3) were also incorrectly shown as a scalar product. The correct operation is a vector product. These errors have been corrected for 
the print, PDF and HTML versions of this article.
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