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A Brownian machine, a tiny device buffeted by the random
motions of molecules in the environment, is capable of exploiting
these thermal motions for many of the conformational changes in
its work cycle. Such machines are now thought to be ubiquitous,
with the ribosome, a molecular machine responsible for protein
synthesis, increasingly regarded as prototypical. Here we present
a new analytical approach capable of determining the free-energy
landscape and the continuous trajectories of molecular machines
from a large number of snapshots obtained by cryogenic electron
microscopy. We demonstrate this approach in the context of exper-
imental cryogenic electron microscope images of a large ensemble
of nontranslating ribosomes purified from yeast cells. The free-
energy landscape is seen to contain a closed path of low energy,
along which the ribosome exhibits conformational changes
known to be associated with the elongation cycle. Our approach
allows model-free quantitative analysis of the degrees of free-
dom and the energy landscape underlying continuous conforma-
tional changes in nanomachines, including those important for
biological function.
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Ideally, one would like to “see” the conformational changes of
a Brownian machine as it traverses its work cycle trajectory

over the energy landscape. This information is particularly rel-
evant for a biologically important molecular machine such as the
ribosome, which is responsible for protein synthesis in all living
cells. During the so-called elongation process, the ribosome re-
peatedly links an amino acid carried in by transfer RNA (tRNA)
to the nascent polypeptide chain, with the choice of amino acid
in each cycle dictated by the genetic message on the mRNA. In
the eukaryotic ribosome, this process is facilitated by elongation
factors eEF1A and eEF2, both GTPases.
It is believed that many intermediate conformational states

must be involved in the elongation cycle of the ribosome (1), but
the evidence is inferred, albeit from an impressive array of ex-
perimental techniques. Both cryogenic electron microscopy (cryo-
EM) (2) and X-ray crystallographic approaches (3) have been
used to determine the structures of several biochemically “trap-
ped” states along the conformational trajectory. However, it has
been pointed out that these likely represent only a fraction of the
relevant conformational states, that each biochemically trapped
state may correspond to more than one conformational state, and
that the observed intermediate structures may be affected by the
trapping process itself (1). Powerful algorithms (4, 5) have been
used to sort cryo-EM snapshots into a small number of discrete
classes, each presumed to represent an intermediate state (6). In
some cases, however, snapshots of major ribosomal regions
with large conformational flexibility have defied classification
into discrete states altogether, even by the most advanced an-
alytical methods (7). Single-molecule FRET experiments have
yielded evidence for discrete conformational changes in single,

freely equilibrating pretranslocational ribosomes, and provided
ensemble averages for such changes, but have been unable to
provide data for short-lived intermediates (8, 9).
In a groundbreaking study, Fischer and coworkers (10) used

cryo-EM to determine the structure and occupancy of different
ribosomal conformational states as a function of time, obtaining
the free-energy landscape through the Boltzmann factor (11).
The specific process studied was that of back-translocation, a slow
process (on the order of 30 min), in which the elongation cycle is
partially reversed through interaction with another GTPase:
LepA. Cryo-EM snapshots were classified in a hierarchical series
of supervised (reference-based) steps to yield multiple con-
formations, differing mainly in specific preselected features: de-
gree of intersubunit rotation, tRNA positions, and degree of head
swivel of the small subunit—all changes known to be associated
with the elongation work cycle of the ribosome.
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Many functions in the cell are performed by Brownian machines,
macromolecular assemblies that use energy from the thermal
environment for many of the conformational changes in-
volved in their work cycles. Here we present a new approach
capable of mapping the continuous motions of such nano-
machines along their trajectories in the free-energy landscape
and demonstrate this capability in the context of experi-
mental cryogenic electron microscope snapshots of the ri-
bosome, the nanomachine responsible for protein synthesis
in all living organisms. We believe our approach constitutes
a universal platform for the analysis of free-energy landscapes
and conformational motions of molecular nanomachines and
their dependencies on temperature, buffer conditions, and
regulatory factors.
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There is general agreement, however, that the value of any
approach capable of revealing conformational changes along
specific trajectories is determined by the extent to which it
provides unbiased quantitative insight into the conformational
degrees of freedom, the ensemble kinetics, and the free-energy
landscape traversed by the system under examination (1, 12, 13).
Here, we present a new analytical approach capable of mapping

continuous conformational changes of nanomachines along any
trajectory in the energy landscape, without timing information,
supervision, or templates. Our unbiased approach determines the
number of degrees of freedom exercised during the observations,
the energy landscape explored by the nanomachine, the energy
trajectory traversed during the work cycle, and the continuous
conformational changes associated with the work cycle. These
novel capabilities constitute a powerful platform for quantitative
study of the conformational and energy trajectories of nano-
machines, including those engaged in a wide range of important
biological processes. As reported below, the first application of
this approach to an experimental cryo-EM dataset of ribo-
somes purified from yeast not engaged in translation reveals
a closed trajectory of minimum energy along which the ribo-
somes appear to idle with conformational changes reminiscent of
those observed during the protein elongation cycle.

Conceptual Outline
A flow diagram is shown in Fig. 1, with a more technical description
following the conceptual outline. Details are presented in the SI
Text. As used, for example, in early approaches to image classifi-
cation in electron microscopy (14), a snapshot can be represented as
a vector in high-dimensional space by regarding the intensity value
at each pixel of the snapshot as a component of the vector. Dis-
tance is a measure of similarity between the snapshots in this
space. A collection of snapshots produces one or more data
clouds, with discrete conformations producing separate clouds.
We have previously shown that this approach is able to de-
termine 3D structure from a collection of ultra-low signal 2D
snapshots of unknown orientation (15–18), and, in the presence
of orientational heterogeneity and defocus variations, distinguish

between discrete conformations with best-in-class perfor-
mance (17).
Here, we are concerned with continuous conformational

changes, which produce correlations among the points repre-
senting the snapshots. These correlations define a hypersurface—
a manifold—a concept found useful also in a previous approach to
heterogeneity in cryo-EM (19). Using advanced machine-learning
methods, we have demonstrated the ability to identify such
manifolds in the presence of overwhelming noise and defocus
variations (17).
Our approach begins with determining the orientations of the

snapshots by any of a number of approaches (17), in this instance
by a standard method used in electron microscopy (20). As
shown previously (17, 19), this can be achieved without taking
conformational heterogeneity into account, because the effects
of orientational change dominate. Snapshots lying within a tight
orientational aperture are then selected, and the manifold
spanned by them is determined. This step in the analysis yields
the conformational manifold (spectrum) in the selected viewing
(projection) direction. Of course, the conformational changes
may be governed by more than one parameter. In general,
therefore, the conformational manifold is best described by a set
of orthogonal coordinates. Such a description can be achieved by
one of many well-established machine-learning techniques,
which also reveal the intrinsic dimensionality of the manifold,
and hence the number of degrees of freedom exercised by the
system under observation.
Unfortunately, it is not possible to determine the conforma-

tional changes from such a description, because the local rates of
change in multidimensional manifolds obtained from machine-
learning techniques are, in general, unknown (21, 22) and cannot
be easily related to the underlying changes in the system under
observation (15, 23). To overcome this well-known difficulty, we
introduce an additional step, in which the cloud of points is
mapped to another coordinate system, where the local rates of
change can be determined exactly, and related to the underlying
conformational changes. This step leads to a representation
of conformational change in terms of a universal parameter

Fig. 1. Flowchart representation of the approach used to determine the free-energy landscape, work-cycle trajectory, and associated continuous confor-
mational changes from experimental snapshots of nanomachines in unknown orientational and conformational states.
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(metric). The density of points in this space can now be related to
the energy landscape sampled by the system through the Boltz-
mann factor e

−ΔG=kBT (10), with ΔG denoting the change in the
Gibbs free energy, kB the Boltzmann constant, and T the tem-
perature. The locus of minimum energy in this landscape rep-
resents the trajectory traversed by the machine during its work
cycle. In each viewing direction, 2D movies can be compiled to
reveal the conformational changes along the path of minimum
energy or indeed any chosen trajectory. 3D movies can be com-
piled by stepping along such a trajectory and, in each step, per-
forming a 3D reconstruction by integrating the information from
many different viewing directions.

Analytical Procedure
The analysis is illustrated below in more technical terms with
reference to a set of 849,914 experimental cryo-EM snapshots of
80S ribosomes from yeast, obtained in the course of a study of
translational initiation by a plant virus (SI Text). The procedure
of purification rendered the ribosome free of mRNA and most
of the tRNAs.
Manifolds defined by data clouds are, in general, nonlinear:

the data lie on intrinsically curved rather than flat hypersurfaces.
Such manifolds can be identified and described (embedded) by
graph-theoretic machine-learning techniques often used for di-
mensionality reduction. The so-called diffusion map embedding
algorithm used in our work yields a description of a curved
manifold in terms of the orthogonal eigenfunctions (more pre-
cisely eigenvectors) of known operators, specifically the Laplace–
Beltrami operator (21, 22, 24) (SI Text). We use a specially
developed kernel to deal with the substantial defocus variations
encountered in cryo-EM data (17) (SI Text). In Fig. 2, we show
representative cryo-EM snapshots (Fig. 2A) and a typical data
manifold (Fig. 2B) described in terms of the first two eigen-
vectors of the Laplace–Beltrami operator. [In general, there is
no simple correspondence between the eigenvectors obtained
from this nonlinear analysis, and those obtained with linear
approaches, such as principal component analysis (PCA) and
singular value decomposition (SVD).] The manifold produced by
the experimental snapshots is, in fact, nonlinear, with an intrinsic
dimensionality of five (SI Text).

Fig. 2 describes the data in terms of the eigenfunctions of the
Laplace–Beltrami operator with respect to an unknown metric
(22). The absence of information on the metric precludes
a consistent description of the conformational changes in terms
of a known universal parameter. We solve this problem by
mapping the manifold to another space, in which the eigen-
functions are known exactly. For this, we use an approach used in
nonlinear Laplacian spectral analysis (NLSA) (25), a technique
capable of performing SVD on nonlinear manifolds (nonlinear
SVD for short) (SI Text). Briefly, one considers a collection of
supervectors formed by concatenating snapshots falling within
a window moving over the data vectors. The snapshots within
each supervector are ordered according to the projections of the
points representing them on a line through the origin, making an
angle θ with, say, the horizontal axis (Fig. 2 and SI Text). By
virtue of this projection, the arrangement picks out the confor-
mational evolution along the selected line characterized by θ,
with the random ordering of conformational changes along other
directions assuming the character of noise. Nonlinear SVD (25)
is then used to extract characteristic images (topos) and their
evolutions (chronos) from these supervectors (SI Text). Each
topo/chrono pair constitutes an element of a biorthogonal de-
composition of the conformational changes along the selected line.
Noise-reduced snapshots can be reconstructed from the topo/
chrono pairs with significant (above-noise) singular values and
embedded to obtain the manifold characteristic of the confor-
mational changes along the selected line (SI Text). By con-
struction, this manifold is one-dimensional, described in terms of
known eigenfunctions, viz. cosðkπτÞ;   k= 1; 2; 3; . . ., and governed
by the single parameter τ (SI Text).
Given a sufficiently dense collection of radial lines, each

making an angle θ with the horizontal axis, the conformational
changes can be described in any direction in the multidimen-
sional space of conformations by the parameter τðθÞ. The map-
ping from a space of unknown metric and hence eigenfunctions
to one characterized by known eigenfunctions governed by a
single parameter τðθÞ allows a consistent description of the
conformational changes (SI Text and Fig. S1). This description of
conformational changes in a given projection direction can be
related to descriptions in other projection directions by assuming
that the same conformational spectrum is viewed in all projec-
tion directions. In other words, the histograms of occupancy vs.

Fig. 2. (A) Representative cryo-EM snapshots, and (B) 2D view of a typical conformational manifold. The manifold is derived from a measure of similarity
among ∼1,500 cryo-EM snapshots of ribosome particles viewed within a tight orientational aperture. The axes ψ1,ψ2 represent the first two eigenvectors
obtained by the diffusion map algorithm with a kernel able to deal with defocus variations.
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conformational parameter τðθÞ for different projection directions
all represent the same spectrum of conformations and can thus be
equalized. This equalization allows a universal description of the
conformational spectrum across all projection directions. For any
selected projected direction, the energy landscape along any line
can be determined from the density of points along that line via
the Boltzmann factor. Energy landscapes of higher dimension
(with the dimensionality given by the number of eigenvectors) can
be reconstructed by a tomographic extension of this approach
(Fig. 3 and SI Text). Here, we concentrate on the first two eigen-
vectors, which contain some of the most interesting biological in-
formation (see below).
With this information in hand, the structural evolution of the

system, including 2D movies of the conformational changes and
the system’s thermodynamic properties, can be quantitatively
investigated in any viewing direction (SI Text and Movie S1). For
any point on the energy landscape, a 3D structure map can be
compiled by integrating the 2D information from many viewing
directions into a 3D representation (Fig. 4) (SI Text and Movies
S2–S4). Thus, 3D movies can be compiled by stepping along any
selected trajectory in the energy landscape and reconstructing
a 3D structure map in each step. The conformational changes
along the closed minimum-energy trajectory of Fig. 3B are
summarized in Fig. 3 and exemplified in Fig. 4. The associated
movies (Movies S2–S4) present the ribosome as it evolves, with
each movie corresponding to a different viewing direction se-
lected for optimal visibility of the biologically relevant domain

motions (Fig. 3A). We note that, by construction, these movies
are based on similarity rather than time. Accordingly, identical
trajectories in opposite directions cannot be distinguished.

Results
The trough of minimum free energy is seen to form a closed,
roughly triangular path (Fig. 3B), with variations of <0.9 kcal/mol
(1.5kBT at room temperature) in the energy positions of the
deepest points. The energy difference between the lowest and
highest points of the entire landscape, corresponding to states
with the highest and lowest nonzero occupancy in the experi-
ment, amount to 3.8 ± 0.65 kcal/mol (6.5 ± 1.0kBT at room
temperature), with the uncertainty stemming chiefly from the
low occupancy of high-energy states. The energy range covered
nonetheless indicates that so-called transition states with ener-
gies several times the thermal energy have been probed in our
experiment.
We examine the 3D movies showing the conformational

changes along the closed triangular trajectory, analyzing in detail
seven structure maps along the way (SI Text and Movie S5). Using
rigid-body fitting of domains while making use of a published cryo-
EM map of the yeast ribosome (26) for reference, we observe
combinations of four motions previously described in the litera-
ture and associated with the elongation cycle, as follows: (i)
ratchet-like intersubunit rotation, a counterclockwise rotation of
the small subunit about an axis normal to the subunit interface
(Fig. 3A, solvent view) (27, 28); (ii) rotation (closing movement) of

Fig. 3. (A) Three views of a cryo-EM map of the 80S ribosome from yeast (32), with arrows indicating four key conformational changes associated with the
elongation work cycle of the ribosome. (B) The energy landscape traversed by the ribosome. The color bar shows the energy scale. The energy range has been
truncated at 2 kcal/mol to show details of the triangular trough. The error in energy determination along the closed triangle is 0.05 kcal/mol. The roughly
triangular minimum free-energy trajectory is divided into 50 states. The arrows indicate the structural changes between 7 selected states, each identified by its
place in the sequence of 50 states.

Dashti et al. PNAS | December 9, 2014 | vol. 111 | no. 49 | 17495

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental/pnas.201419276SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental/pnas.201419276SI.pdf?targetid=nameddest=STXT
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1419276111/video-1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental/pnas.201419276SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419276111/-/DCSupplemental/pnas.201419276SI.pdf?targetid=nameddest=STXT
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1419276111/video-5


the L1 stalk toward the intersubunit space (Fig. 3A, solvent and
top views) (29); (iii) small subunit head swivel, a rotation of the
subunit head about its long axis (Fig. 3A, top view) (30); and (iv)
small subunit head closure, a “nodding” motion of the head (Fig.
3A, side and solvent views) (31). The first three motions are cor-
related and known to be associated with the process of mRNA–
tRNA translocation (30, 32), whereas the fourth is known to ac-
company the selection of cognate aminoacyl tRNA during the
process of decoding (31).
Proceeding clockwise along the minimum free-energy pathway,

these motions occur in the sequence encountered during the
elongation cycle: starting at the apex of the triangle and moving
to the right side of the base (Fig. 3B), we see the small subunit
head closure as a prominent motion, corresponding to the tRNA
selection step. Next, proceeding along the base of the triangle,
three coordinated movements of small subunit body, head swivel,
and L1 stalk occur—all expected during translocation—while the
small subunit head remains in the closed position. Finally, moving
up from the left side of the base to the apex, we observe the
reversal of head closing (the conformational change associated
with the disengagement of the mRNA from the decoding center),
as well as the reversal of the intersubunit motion.

Discussion
The energy landscape constructed by the analysis of the ribo-
some ensemble shows multiple interconnected paths of rela-
tively low energy. Of these, a path of roughly triangular shape
clearly stands out, encompassing roughly one third of the
molecules. Comparison of 3D reconstructions from data at
selected points along this path reveals conformational changes
previously observed in the elongation cycle of fully pro-
grammed, translating ribosomes. Because the ribosomes cap-
tured in our snapshots were not engaged in protein synthesis,
lacking mRNA and aminoacylated tRNAs, we must assume
that their idle motions in the thermal environment sample the
conformational space permitted by the degrees of freedom,
thus exhibiting the conformational changes that would be
productive in the presence of the ligands of the translational
machinery (mRNA, aa-tRNA, eEF2, and eEF1A). Indeed,
idling of the pretranslocational ribosome in the absence of
elongation factors along the direction of the most prominent
conformational changes (intersubunit motion and opening/
closing of L1 stalk) has been previously observed by single-
molecule FRET (8, 9) and cryo-EM (33). Idling of the empty ri-
bosome along the same path has also been inferred from a series of
X-ray structures (34). It remains to be established by the approach
outlined in this paper whether fully programmed ribosomes follow
the same path identified here. As to the other paths traversing the
free-energy landscape (Fig. 3B), it is tempting to speculate that

they may represent alternative routes of the molecular machine
under different buffer and temperature conditions.
We now discuss the salient features of our approach. First, the

usefulness of movies of Brownian machines has been rightly ques-
tioned, because each trajectory of a single machine is strongly
influenced by stochastic factors and thus is unique (1). The movies
presented here, however, integrate information from a large en-
semble of snapshots, each stemming from an object viewed only
once. By using manifolds to capture the properties of the entire
dataset, and nonlinear singular value analysis to suppress noise, our
approach offers an efficient means for extracting the ensemble ki-
netics, i.e., the information common to a collection of objects, each
viewed in an initially unknown orientational and conforma-
tional state.
Most successful experimental studies of the conformational

spectra of biological machines have been hitherto restricted to
sorting snapshots into a small number of classes (10, 11), using
templates in some form, relying on timing information, or a
combination of these tools (10). In contrast, our approach nat-
urally yields detailed conformational trajectories and energy
landscapes without a priori information or assumptions and at
moderate computational expense (SI Text).
Of course, the maximum number of detectable conformational

states is limited by various factors. These factors include the
frequency (via the Shannon–Nyquist theorem) with which the
conformational spectrum has been sampled, the information
content of the individual snapshots, and, ultimately, the atomic
nature of the object itself. In our analysis, the conformational
signal stems primarily from the most heavily sampled projection
directions, in each of which the conformational spectrum is
randomly sampled by up to 5,000 snapshots. The number of
meaningfully distinct conformational states is governed by the
signal-to-noise ratio, which determines the statistical confidence
with which neighboring states can be distinguished. In this study,
the requirement for neighboring conformational states to be
separated by 3 SDs (3  σ) means that ∼50 conformational states
can be distinguished (SI Text). This number is about an order of
magnitude larger than previously achieved without timing in-
formation or templates. In combination with the recent avail-
ability of large cryo-EM datasets with near-atomic resolution (7,
35), our approach promises the possibility to extract conforma-
tional information with unprecedented detail.
In recent years, increasing computing power has fueled efforts

to simulate the conformational trajectories of molecular machines,
particularly the ribosome (36), by molecular dynamics. Experi-
mental results obtained with the new approach presented here
offer the promise to guide these efforts and provide the means for
verifying important modeling assumptions.

Fig. 4. Example of conformational changes along the trajectory: ratchet-like motion. (A) Unrotated ribosome, map 14 in Fig. 3B. (B) Maximally rotated
ribosome, map 36. (C) Superposition of the two maps. The full set of frames showing continuous conformational changes is shown in three common viewing
directions in Movies S2–S4.
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Conclusions
Given our increasingly detailed knowledge of the structure of
biological machines in general, and the ribosome in particular, it
has been suggested that the “heroic age” of biostructure de-
termination is drawing to a close and that further progress
requires the study of ensemble kinetics and conformational en-
ergy landscapes (1). As shown by the results presented here, our
approach offers a powerful platform for the quantitative study of
continuous conformational motions over the energy landscapes
traversed by biological machines in the course of their operation.
This development may significantly accelerate the dawn of the

predicted new era in biology. More generally, the way to the
quantitative study of the structure, kinetics, and operational
cycles of nanomachines is now open.
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SI Text
Cryo-EM Dataset.
Description. The dataset consisted of 849,914 projection images
(“particles”) of the yeast 80S ribosome embedded in a thin layer
of ice, obtained with a transmission electron microscope, as
detailed below.

Ribosome preparation. Purification of active yeast 80S ribosomes
using cysteine-charged sulfolink columns was performed as de-
scribed in Leshin et al. (1).

Electron microscopy. A carbon-coated Quantifoil 2/4 grid
(Quantifoil Micro Tools) was prepared following standard cryo-
EM procedures (2). Grids were glow-discharged for 25 s in an H2,
O2 atmosphere, with 15 W and 25 s using a plasma cleaner (Gatan
Solarus Model 950 Advanced Plasma System; Gatan) to render
them hydrophilic. An aliquot of 4 μL containing the sample at a
concentration of 50 nM was pipetted onto the carbon-coated grid.
The grid was blotted in 100% humidity at 4 °C for 5 s and plunge-
frozen into liquid ethane cooled by liquid nitrogen using the
Vitrobot (FEI). Images were recorded with a 4k × 4k Tietz
CCD detector mounted on an FEI Tecnai Polara electron mi-
croscope operating at 300 kV and a nominal magnification of
80,000× under low-dose conditions (∼20 e−/Å2). The resulting
pixel size was 1.5 Å on the object scale. For automated data
collection, the program AutoEMation (3) was used.
Image preprocessing and orientation determination. After visual in-
spection and evaluation of the micrographs and their power
spectra, ∼4,700 micrographs were selected for further analysis.
The total number of computer-selected particle candidates was
∼1,100,000, brought down to 849,914 by manual verification.
Orientations of particles were determined by iterative projection
matching using the pySPIDER (4) software package with an
angular step size decreasing from 15° to 0.5°. Electron Micros-
copy Data Bank (EMDB) 1067 (5), low pass-filtered to 70Å, was
used as the initial reference. Contrast transfer functions (CTFs)
were determined for each micrograph in the standard way (6).
Before further analysis, the snapshots within a small aperture
over the two-sphere of projection directions were brought into
in-plane orientational registry.

Manifold Embedding by Diffusion Map.
Outline. Common to all manifold embedding algorithms is the
representation of manifolds in a low-dimensional Euclidean space
(7–12). The family of diffusion maps, introduced by Coifman and
coworkers (11, 12), establishes a rigorous link between the ei-
genfunctions (more precisely eigenvectors) ψ i of the Laplace–
Beltrami operator with respect to the Riemannian metric g

Δg = −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgÞp ∂i
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgÞ
p

g ij∂j
i

i; j= 1 . . . n; [S1]

and the similarity between snapshots, as measured by the diffu-
sion distance between them. The intrinsic dimensionality of the
manifold, determined by well-established procedures (13), cor-
responds to the number of degrees of freedom exercised by the
system under observation.
Defocus-tolerant kernel. The information content of a cryo-EM
snapshot depends on the defocus at which it is obtained. The
effect of defocus on the similarity measure between two otherwise
identical snapshots must be eliminated. We achieve this by
a double-filtering kernel, which corrects the Euclidean distance
Dij, as follows:

D2
ij =

X
pixels

jPSFj ⊗ Ii −PSFi ⊗ Ijj2

=
X
pixels

jPSFj ⊗ ðPSFi ⊗PiÞ−PSFi ⊗
�
PSFj ⊗Pj

���2:
=

X
pixels

jPSFi ⊗PSFj ⊗
�
Pi −Pj

���2
[S2]

For each snapshot i, Ii represents the image intensity distribution,
PSFi the microscope point-spread function, Pi the projected po-
tential, and ⊗ the convolution operator. This scheme ensures
a zero Euclidean distance between two snapshots differing in
defocus only. For computational efficiency, the distances are
calculated in Fourier space so that convolution becomes multi-
plication. Let ~Ii be the Fourier transform of the image and CTFi
the Fourier transform of the point-spread function. The applica-
tion of Parseval’s theorem (14) yields

D2
ij =

X
q

jCTFj ·~Ii −CTFi ·~Ijj2: [S3]

One-dimensional manifolds. Snapshots of a system exercising only
one degree of freedom give rise to a 1D Riemannian manifold
described in terms of the eigenfunctions of the operator

Δg = −
1ffiffiffi
g

p ∂
�

1ffiffiffi
g

p ∂
	
: [S4]

For such manifolds, it is always possible to select a coordinate sys-
tem in which the metric gðτÞ= 1. The eigenvalue equation then
assumes the simple form

∂2ψðτÞ
∂τ2

= −λψðτÞ; [S5]

whose normalized eigenfunctions satisfying the Neumann boundary
conditions are of the form

ffiffiffi
2

p
cosðkπτÞ. It can be easily seen that

a representation of a bounded 1D manifold in terms of the first two
eigenfunctions ðk= 1; 2Þ is a parabola. Unbounded 1D manifolds
are characterized by eigenfunctions of the form

ffiffiffi
2

p
cosð2kπτÞ andffiffiffi

2
p

sinð2kπτÞ. The representation of an unbounded 1D manifold in
terms of the first two eigenfunctions is thus a circle. For both types
of 1D manifold, each snapshot is associated with a value of τ
(modulo 2π for the unbounded type), regardless of the dimension-
ality of the representation (number of eigenfunctions used).

SVD on Nonlinear Manifolds.
Outline. SVD is a data-analytical approach capable of extracting
characteristic images (topos) and their time evolutions (chronos)
from large noisy datasets (15, 16). Like PCA, SVD assumes a
linear structure in the data. Geometrically, this is tantamount to
the data lying on a flat hyperplane (16). Often, however, the data
have a nonlinear intrinsic structure and thus lie on a curved hy-
perplane (nonlinear manifold) (7), precluding a straightforward
application of SVD. This limitation has been overcome by a ma-
chine-learning technique (NLSA), which is able to perform SVD
on nonlinear manifolds (17, 18).
Concatenation. NLSA analysis requires a series of snapshots or-
dered according to a single parameter. In our approach, the
snapshot order is determined by the projected position of the
embedded point representing it on a trajectory. This trajectory
can constitute a straight line, for example, the ψ1 or ψ2 axis
above, or any other trajectory of interest. The analysis proceeds
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as follows. First, ordered (time-lagged) embedding (19–22) is
used to obtain c-fold concatenated supervectors X from a dataset
consisting of vectors x, with a typical supervector taking the form

Xt =
�
xt; xt−δt;⋯ xt−ðc−1Þδt

�
: [S6]

The timestamp assigned to each supervector corresponds to the
mean of the timestamps of its constituent vectors. Second, graph-
based machine learning (9, 11, 23, 24), here the diffusion map
algorithm (11, 12), is used to identify the nonlinear data manifold
formed by the collection of supervectors. This analysis provides
a Euclidean description of the manifold in terms of the eigenfunc-
tions of the Laplace–Beltrami operator, collectively referred to as
Ψ below.
Nonlinear SVD. The supervectors Xt are projected onto the mani-
fold to obtain the matrix A

A = XμΨ; [S7]

with X representing the matrix of supervectors Xt, μ the
Riemannian measure of the manifold, and the (empirical) eigen-
function Ψ is a truncated set of the eigenfunctions of the Laplace–
Beltrami operator on the manifold (17). This Euclidean description
of the nonlinear manifold allows one to analyze the matrix A by
standard SVD.
Reconstruction and parameter extraction. The modes (specifically the
chronos) obtained from SVD are projected from the space
spanned by Ψ back to the time domain, and the topos corre-
sponding to the supervectors are unwrapped to obtain individual
snapshots (17). These snapshots reflect the conformational
changes along the selected trajectory (e.g., a line in embedding
space making an angle θ with the horizontal axis). The embedding
of these snapshots by diffusion map produces an excellent 1D
manifold, accurately described by eigenfunctions of the formffiffiffi
2

p
cosðkπτÞ. The conformational parameter τðθÞ is extracted

from the 1D manifold using the first three eigenvectors of the
1D manifold (Fig. S1).
The mapping from a description of the data in terms of un-

known eigenfunctions of the Laplace–Beltrami operator ψ i to
one in terms of known eigenfunctions of the type cosðkπτÞ is
a key feature of our analysis. The resulting conformational pa-
rameterization in terms of τ allows a consistent approach to
reconstructing the energy landscape and compiling movies
along any trajectory, including the minimum-energy path.

Free-Energy Landscape. We use a tomographic approach to retrieve
the 2D free-energy landscape from snapshots obtained by NLSA.
The dimensionality here refers to the number of eigenfunctions
ψ i considered in the analysis. The density of points nðτ; θÞ on
the 1D manifold stemming from concatenation along a straight line
at an angle θ to the horizontal axis is the result of projecting the
data cloud onto that line. Thus, nðτ; θÞ is a measure of the
density of points perpendicular to the line at a point character-
ized by τ. Thus, nðτ; θÞ is, in effect, the Radon transform of the
embedded data cloud in the direction ðθ+ π=2Þ. The set of
nðτ; θÞ compiled over the range ð0≤ θ≤ πÞ thus represents
a collection of Radon transforms of the cloud of points in the
space of ψ i. The inverse Radon transform reproduces the cloud
of points, described in terms of the known eigenfunctions above.
This approach was implemented using 180 concatenation

directions at 1° intervals. The projected density nðτ; θÞ was de-
duced from the τðθÞ values as follows. For each direction, the τðθÞ
values were centered to zero-mean to align the different Radon
transforms. The density was obtained by counting the number of
points in each of 50 classes. Inversion was performed by filtered
back-projection with a Shepp–Logan filter. The energy landscape
was derived from the density of points via the Boltzmann factor,
nðτ; θÞ= e−ΔG=kBT , with ΔG the change in Gibb’s free energy and

the usual meaning for the other parameters. It can be readily
shown that the error in this approach is determined by counting
statistics. In our case, this is about 0.05 kcal/mol along the min-
imum-energy trajectory.
To retrieve n-dimensional energy landscapes (with n being the

number of ψ i included), concatenation is performed along di-
rections defined by an (n − 1) sphere.

Compiling Movies and 3D Volumes.
2D movies.We now address the compilation of movies showing the
continuous conformational changes as seen in a given projection
direction (2D movies). These movies consist of a sequence of
NLSA reconstructed snapshots, ordered along the minimum-en-
ergy path in the energy landscape (Movies S1–S5). To identify the
raw snapshots in the neighborhood of this path, the trajectory is
mapped back from space of known eigenfunctions to the space of
ψ i using Eq. S7 and the procedure described below. NLSA is then
applied to the snapshots along the path to generate NLSA re-
constructed snapshots as frames of the 2D movie.
The movies were compiled using the MATLAB video writer

object, with the color axis for all frames normalized to the
minimum and maximum intensities of the ensemble; 12.5 frames
are shown per second to produce a 50-frame, 4-s movie.
Patching together information from different orientations. Because the
minimum energy trajectory is a closed path (Fig. 3), embedding
reconstructed snapshots along this path results in a circular
manifold, characterized by a single angular parameter 0≤ τ< 2π,
which serves as a conformational parameter. In principle, the
parameter τ can be used to establish equivalent conformational
classes across projection (viewing) directions and thus reconstruct
a 3D volume for each conformational class. However, the zero of
the parameter τ in each direction is arbitrary. The resulting am-
biguity can be resolved as follows:

i) At each point along a great circle, all snapshots spanning the
conformational spectrum are concatenated into a supervector
ordered according to increasing τ in that projection direction.

ii) The correlation coefficient between two consecutive super-
vectors along a great circle is calculated.

iii) The same correlation coefficient is calculated with the snap-
shot sequence for all possible starting (zero-τ) positions,
with and without reversing the sense of the sequence.

iv) The largest correlation identifies the mutually consistent
sense and starting point for adjacent conformational spectra.
The results are propagated along the great circle by repeat-
ing the process above.

v) The conformational sense established along one great circle
is propagated to other great circles via their points of in-
tersection with the first.

The above approach is robust and computationally fast.
The rate at which the conformational parameter τ changes along

the 1D manifold can vary slightly from projection direction to
projection direction due to orientational inhomogeneity of the
metric g (Eq. S4). We compensate for this effect by equalizing the
histogram of the τ parameter in each projection direction to that
corresponding to the union of 10 projection directions with the
most active conformational spectra (measured by the magnitude
of the singular values in the NLSA reconstruction along the se-
lected trajectory). The efficacy of this approach has been validated
by simulation.
3D volumes and movies. 3D movies were compiled using University
of California, San Francisco (UCSF) Chimera (25), taking or-
thographic surface representations of output volumes for the 50
reconstructed classes used as input frames. Each volume was first
segmented into large and small subunits using Chimera. A Py-
thon script was used to capture the sequence of frames from
three standard points of view (side view, solvent view of the 40S
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subunit, and top view; Movies S2–S4, respectively). Movie S1
shows the conformational changes between the seven maps of
Fig. 3 as seen from the standard viewing directions.

Computational Details.
Hardware.Computations were performed on the following cluster:
16 CPU nodes, each consisting of two Intel Xeon E5620 CPUs
@2.4GHz with four cores; 48 GB of memory; and 200GB of local
hard drive.
Software. Snapshots were picked and preprocessed using SPIDER
(4). The NLSA pipeline, energy landscape reconstruction, and
compilation of 2D movies were implemented in MATLAB. 3D
reconstruction was performed with the Arachnid software package
(4). UCSF Chimera was used for visualization and compilation of
3D movies.
Computational expense and scaling. The NLSA pipeline, an embar-
rassingly parallelizable problem for different projection direc-
tions, was implemented using the MATLAB parallel processing
toolbox. NLSA data analysis with 32 MATLAB workers requires
∼10 h for 320 projection directions with a total of 184,500
snapshots. The number of snapshots in the most densely pop-
ulated projection direction is ∼6,500. Reconstruction of the
energy landscape for all 320 projection directions requires
∼7 d on the same cluster. 3D reconstruction of volumes for 50
different conformations can be completed in ∼1 h using one
cluster node. Due to the nonuniform density of snapshots over
the two-sphere, the computational expense of the NLSA varies
across projection directions. The data analysis process is thus
asynchronous between nodes, with the projection direction with
the largest number of snapshots determining the total computa-
tion time. Generation of a (k-nearest neighbor) k-NN graph of all
snapshots in each projection direction is the most time-consuming
part of NLSA and thus a good measure of algorithmic scaling.
This task has O(ns

2 × d) complexity, with ns as the number of
snapshots in each projection direction and d as the number of
pixels in each snapshot.

Number of Conformational Classes.We consider the effect of SVDon
noise and the number of distinguishable conformational classes with
reference to the process used to extract continuous conformations:

i) Embed data by diffusion map. This step produces a cloud of
points, viewed, e.g., in projection on the ðψ1;ψ2Þ plane.

ii) Reconstruct 2D energy landscape using NLSA.
iii) Reconstruct NLSA snapshots along a selected trajectory and

embed to obtain a 1D manifold.

This process is designed to extract the conformational variations
along the selected trajectory, e.g., the minimum-energy path.
The extent to which two conformations can be distinguished is

determined by two factors: (i) the relevant conformational signal,
as manifested in the extent of the data cloud along the trajectory,
hereon designated Δ; and (ii) The noise as manifested by the
distribution of the data cloud perpendicular to the trajectory,
characterized, for a normal distribution, by an SD σ. The noise
characterized by σ determines the confidence with which two
conformations can be regarded as distinct. The number of dis-
tinct conformational states is the extent of the data cloud along
the trajectory, measured in units of pσ;  ð1≤ p≤ 6Þ, depending on
the desired level of confidence.
Consider now the noise-reduction capability of the SVD step.

Henry and Hofrichter (16) discussed the effect of noise on
SVD analysis of a matrix consisting of n vectors, each with
m components. They show that with input data characterized
by noise of variance σ2input, SVD produces an output, whose
variance due to noise is

�
1
m+ 1

n

�
σ2input. When, e.g., m � n, this yields

σoutput = σinput=
ffiffiffi
n

p
, a conceptually appealing scaling behavior.

Consider next a single-mode reconstruction, ignoring the sin-
gular value. As before, let the range spanned by the resulting
conformations be Δ. Different conformational classes must be
separated by pσoutput. The number of permissible conformational
classes is therefore

Nclass =
Δ

pσoutput
=

Δ

pσinput

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1
m
+
1
n

	s ≈
Δ

ffiffiffi
n

p
pσinput

; m � n; [S8]

with p depending on the required confidence level. The parameter
m is replaced by cm for c-fold concatenated snapshots. In the
present work, Δ≈ 5;   σinput ≈ 1;   p= 3;   n≈ 103;   cm � n; yielding
Nclass ∼ 50.
The above analysis ignores noise reduction due to projection

onto the eigenvectors of the Laplace–Beltrami operator. Taking
this into account suggests that up to ∼300 conformational classes
can be distinguished, subject, of course, to the other limiting
factors mentioned in the main text. In this paper, we use the
more conservative estimate of 50 conformational classes based
on the noise-reduction capability of SVD only.

Pseudocode.
End-to-end analysis.

Input.

Cryo-EM micrographs.

Outputs.

Spectrum of conformational changes along a selected trajec-
tory.
2D and 3D movies of conformation spectrum.

Steps.

i) Particle picking and orientation recovery (using SPIDER).
ii) Locate nGC great circles (one Shannon angle width) in the

space of orientations that are highly populated with exper-
imental snapshots.

iii) Divide each great circle into nP projections each spanning
about one Shannon angle (the ratio of resolution to object
diameter).

iv) For great circle iGC = 1 to nGC do.
v) For projection iP = 1 to nP do.
vi) Identify snapshots that fall into great circle iGC and pro-

jection iP.
vii) Bring snapshots into in-plane registry.
viii) Embed with diffusion map with defocus-tolerant kernel to

obtain eigenvectors ψ of Laplace–Beltrami operator.
ix) Order snapshots along a line making an angle θ with the

horizontal axis in ψ1-ψ2 space.
x) Perform NLSA (see pseudocode below).
xi) Extract the parameter τðθÞ in 1° intervals for 0≤ θ< π.
xii) Reconstruct 2D energy landscape.
xiii) Perform NLSA on a selected trajectory on the landscape.
xiv) Embed NLSA reconstructed snapshots with diffusion map.
xv) Extract conformation parameter τ (conformation spectrum).
xvi) Establish consistent sense and starting points for all con-

formation spectra.
xvii) Compile 2D movie along selected trajectory on energy

landscape.
xviii) endfor.
xix) endfor.
xx) Bin snapshots into Nclass classes based on conformation

parameter τ.
xxi) Perform 3D reconstruction of each class using Arachnid.
xxii) Compile 3D movie.
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NLSA.
Input.

Set of ns snapshots (each with d pixels) along the selected
direction (ψ1; ψ2 or a line in between).
Output.

Set of NLSA noise-reduced reconstructed snapshots.

Steps.

i) Generate supervectors X of c-fold concatenated snapshots.
X is a matrix with dimensions cd × (ns − c + 1), X[(k − 1)d +
1: kd, j] is the j + k − 1th snapshot.

ii) Embed X with diffusion map to obtain truncated set of eigen-
vectors of the Laplace–Beltrami operator Ψ= fψ iji= 1;⋯; lg
and Riemannian measure μ.

iii) Project X onto Ψ : A=XμΨ.
iv) Perform SVD: A = USVT.
v) Project V from manifold back to time domain: V ′T = VTΨT .
vi) Reconstruct with p modes: ~X =

PP
1Xk, where Xk =UkSkkV ′Tk

(Uk is the kth column of the matrix U; similarly, for V ′k , Skk
is the kth element of the diagonal matrix S).

vii) c reconstructions are available for each time point t:
~X ½ðk− 1Þd+ 1 . . . kd;   t− k+ 1� 1≤ k ≤ c. These reconstruc-

tions are averaged to obtain noise-reduced reconstructed
snapshots.

Reconstruct NLSA snapshots along the selected trajectory.
Input.

Selected trajectory on the map of density of points in τ space.

Output.

Set of NLSA reconstructed snapshots along the trajectory.

Steps.

i) On the map of density of points, identify two lines passing
through each point on the trajectory, with the first line con-
necting the point to the center of the density map and the
second normal to the first.

ii) Find class of raw snapshots at the intersection of the two
lines using Eq. S7.

iii) Repeat steps i and ii to identify all raw snapshots contribut-
ing to selected trajectory.

iv) Perform NLSA on the raw snapshots to obtain a 1D compact
manifold (circle).

v) Extract universal conformational parameter τ for each NLSA
reconstructed snapshot.
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Fig. S1. The manifold produced by snapshots obtained by NLSA along a trajectory consisting of a straight line at an angle θ to the horizontal axis in the
ðψ1,ψ2Þ plane.
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Movie S1. Changes in reconstructed cryo-EM snapshots from a selected viewing direction, as the path of lowest energy is traversed. The position along the
path is indicated by the purple dot in the right panel.

Movie S1

Movie S2. Variations in the ribosome structure along the path of lowest energy, as indicated by the position of the purple dot in the right panel. The se-
quence of 3D structures is identical in Movies S2 through S4, but is shown in three different standard viewing directions. Viewing direction here: from the
factor-binding side.

Movie S2
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Movie S3. Variations in the ribosome structure along the path of lowest energy, as indicated by the position of the purple dot in the right panel. The se-
quence of 3D structures is identical in Movies S2 through S4, but is shown in three different standard viewing directions. Viewing direction here: from the
solvent side.

Movie S3

Movie S4. Variations in the ribosome structure along the path of lowest energy, as indicated by the position of the purple dot in the right panel. The se-
quence of 3D structures is identical in Movies S2 through S4, but is shown in three different standard viewing directions. Viewing direction here: from the top.

Movie S4
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Movie S5. The ribosome structure, in three standard views, as it varies between the seven successive points along the path of lowest energy indicated by the
position of the red circle in the right panel.

Movie S5
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