Introduction: Improving virtual screening through physics-based methods

CS/CME/Biophys/BMI 371 Jan. 30, 2017 Ron Dror

Why aren't standard (physics-based) docking methods very accurate?

- Protein flexibility
 - The binding pocket may adopt different conformations when bound to different ligands
 - Most docking protocols treat it as rigid
- Both the protein and the ligand are continually wiggling around, both before and after binding
 - Most docking protocols don't account correctly for entropic effects ("proteins and ligands like to be free")
 - They also don't account for some of the effects of water molecules

Cell, Jan. 26, 2017

In theory, we could determine binding affinity by simply running molecular dynamics simulations

0.00 us

- We would watch the ligand bind and unbind multiple times and determine what fraction of the time it was bound, on average.
- This isn't practical—the simulations would need to be much, much too long

Beta-blocker alprenolol binding to an adrenaline receptor

Dror et al., PNAS 2011

"Alchemical" simulation methods

- Binding affinity depends on the difference in energy between the bound and unbound states
- It does *not* depend on the binding/unbinding pathways
- However, one needs to a pathway to compute the difference in energy
- Solution: use a *fictitious* unbinding pathway, in which the ligand gradually disappears from the binding pocket and rematerializes in water

Star Trek (?)

Another approach: exploit experimental information on protein flexibility

- If you have a very high-resolution crystal structure, you can extract information on different conformations the binding pocket can adopt in the absence of a ligand
- You can then dock to those different protein conformations
 - Include an energetic penalty for the protein conformations that are less populated in the absence of a ligand

Background material

- Ligand docking slides from CS/CME/BioE/ Biophys/BMI 279:
 - <u>http://web.stanford.edu/class/cs279/lectures/</u> <u>lecture7.pdf</u>
- Slides on the relationship between probabilities and energy of a state (the Boltzmann distribution) from CS/CME/BioE/Biophys/BMI 279:
 - <u>http://web.stanford.edu/class/cs279/lectures/</u>
 <u>lecture3.pdf</u>