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X-Ray Crystallography Overview

• Procedure Overview 
• Pure high-concentration sample crystallized (e.g. protein) 
• Shine X-rays on crystals (diffraction) 

• Goal: Obtain 3D Molecular Structure 
• Relevant Application: Experimentally determining the 

structures of proteins and other biological structures



X-Ray Crystallography Setup

Source: http://web.chem.ucla.edu/~harding/ec\_tutorials/tutorial73.pdf x-
ray_cryst_setup

Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1186895/\#\_\_sec5title



X-Ray Crystallography Setup

Source: http://schoolbag.info/chemistry/central/109.html

X-Ray Diffraction. 
Source: https://pubs.usgs.gov/of/2001/of01-041/htmldocs/xrpd.htm





‘Typical’ Approach
• Grow “well-ordered” crystals 

• Required for high-resolution diffraction patterns 

• Get Diffraction Patterns using Crystallography 
• Compute Electron Density Map 

• 3D Grid within unit cells, computing electron 
density at each point 

• Manually (or Computationally) build 
structural model using the Electron Density 
Map 
• Homology modeling is common computational 

approach

Source: Smyth, M. S., & Martin, J. H. J. (2000). x Ray crystallography. Molecular 
Pathology, 53(1), 8–14.

Electron Density Map 
Source: http://www.xtal.iqfr.csic.es/Cristalografia/archivos_07/densidad-
mapa2.jpg
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Overview
• Published in Nature in 2010 
• When crystallizing larger biological systems such as ribosomes, diffraction 

generally yields low resolutions (> 4 Å) 
• Require new methods, as current (2010) methods need high-resolution 

initial structure 
• This paper uses homologous structures with some allowances for 

modifications – e.g., “wiggle room” 
• Key Assumption: As a protein evolves and its amino acid sequence changes, its 

structure (at least locally) will more often than not remain very similar or even 
identical 

• Results: Refining low-resolution structures yields significant improvements 
• Applications in studying crystals that diffract weakly



Paper Approach
• Low-resolution (~5 Å) X-ray diffraction (XRD) data is 

theoretically good enough to ascertain real sample structures 
• Have to find the torsional angles between each atom 
• Although a conformational search (in which we vary the torsional 

angles until we find a fit) would theoretically work, it is too 
computationally demanding 

• Approach uses other information to narrow possibilities 
• General: Ideal bond lengths, bond angles, atom sizes 
• Specific: Homolog Information from a “reference model”



Deformable Elastic Network (DEN)
• Problem: Real structure is different from homolog structure 
• Need to describe these differences mathematically 
• Enter the Deformable Elastic Network (DEN) Approach 

• Implemented in Crystallography and NMR System (CNS) Software 
• Selects atom pairs and defines springs between them  
• Equilibrium spring length set to distance between atoms 
• MD Simulation runs, changing torsional conformations, recalculating 

energies as stipulated in Equation (1), and adjusting based on reference 
model 

• Requirements 
• At least 30% sequence similarity for homologs 
• High resolution homolog ( < 3.5 Å)



Results – DEN Refinement of Synthetic 
Structures

• Synthetic Data Sets 
• Compared DEN vs. NoDEN 

• Target Function 
• Least-squares – “Traditional 

Function” 
• MLF – Max Likelihood Function 
• MLHL – Max Likelihood Function 

that takes phase information into 
account 

• Rfree – measure of ‘goodness of fit’ of 
predicted vs. actual structure 
• Low Rfree more favorable 

• Values in Bold are the best values for 
that column 

• In every case shown, DEN-based model 
better than no DEN

Source for MLF: Pannu, S. N. & Read, R. J. (1996). Improved structure refinement through maximum 
likelihood. Acta Crystallogr. A 52, 659–668. 
Source for MLHL: Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. (1998). Incorporation of 
prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr. D 54, 
1285–1294.



Results – DEN Refinement of PDB 
Structures

• Rfree – measure of ‘goodness of 
fit’ of predicted vs. actual 
structure 
• Low Rfree more favorable 

• Known Structures from 
Protein Data Bank (PDB) 

• PDB ID - represents a Protein 
in the Data Bank 

• Values in Bold are the best 
values for that column 

• In every case shown, DEN-
based model better than no 
DEN



Results – Summary & Electron Density Map

• The Rfree values using DEN were 
all better than the ones using 
no DEN 
• Better Model Fit using DEN 

• The use of DEN in addition to 
homology modeling allows for a 
better prediction of protein 
structures than previous 
approaches 
• 4% improvement in Rfree Figure 3 from Paper.



Strengths of Paper
• DEN method a significant improvement over previous methods 
• Uses homolog comparison to increase computational viability 

• Verified method by testing against known structures 
• Clear, practical research applications 
• Experimental determination of larger biological structures such as 

ribosomes 
• X-ray crystallography, cryo-electron microscopy, and potentially 

optical imaging once its resolution is high enough



Weaknesses of Paper
• Communication Style 

• Paper written for experts in the field 

• Technical 
• DEN Refinement is very useful for 

larger deformations, but not so much 
for smaller changes in structure 
(Figure 4) 

• Variations in homologous structure 
families 

• Further refinement needed Figure 4 From Paper.
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X-Ray Crystallography: From Electron-Density Map to
Protein-Structure

Task: Trace the protein sequence of amino acids through the 3D
electron density map.

Difficult protein structures and low-quality density maps can require a
great deal crystallographer effort.

It would be great if we could automate this process!

Figure: Figure 5 from ”Automated crystallographic ligand building using the medial axis transform of an electron-density
isosurface”
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Using Low-Resolution Density Map to Determine
Protein-Structure

Problem (Quality of Map)

Low resolution of electron-density map makes tracing the protein difficult
and time consuming.

Figure: Left: Electron density map of protein. Right: Non-hydrogen atoms of
protein-structure that fits map. (Figure 2 from paper)
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Using Low-Resolution Density Map to Determine
Protein-Structure

Overview: This paper expands upon a previously developed
probabilistic model to trace a protein backbone in poor quality maps
(∼ 3 to 4 �A resolution).
Automated Crystallographic Map Interpretation (ACMI)
Improved Belief Propagation Protocol
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Automated Crystallographic Map Interpretation (ACMI)

Probabilistic framework to sample all-atom protein-structure models.

Three-phase process of ACMI pipeline:

Figure: Figure 3 from paper
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Novelties of ACMI Methodology

Ties local density information and global constraints to infer possible
locations of residues.

Each residue’s location is represented as a distribution over the entire
electron-density map.

To do this, ACMI uses a probabilistic graphical model:

Pairwise Markov-field model (MRF).

MRF allows us to probabilistically represent all possible structures in a
compact manner and perform inference on subsets of the graph.
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Graphs and Pairwise Markov-Field Models

Markov Random Field is an undirected graphical model that defines a
probability distribution on a graph.

Vertices are associated with random variables.

Vertex i corresponds to the i th amino acid in the sequence.
Random variables describe the location, ~ui , of each Cα.

Undirected edges form pairwise constraints on connected random
variables.

An edge exists between each vertex to signify 3D folding constraints.
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Markov Random Field: Example

“Based on my current belief, I would expect you to be located
(with probability) here.”

Figure: Markov Random Field for example amino acid sequence. Graph represents
the full-joint probability distribution over all possible configurations for all residues
in the target protein.
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ACMI phase I: Local Match

P(U|M) =
∏
i∈V

ψi (~ui |M)×
∏

(i ,j)∈E

ψi ,j(~ui , ~uj)

ψi (~ui |M) (observation potential function): prior probability on the
location of an amino acid given map M. Ignores all other amino acids
in protein.

ψi ,j(~ui , ~uj) (Edge potential function): global constraints on protein
structure.

Adjacency potential: adjacent residues must maintain ∼ 3.8 �A spacing
and proper angles.
Occupancy potential: no two residues can occupy the same space.
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ACMI phase 2: Belief Propagation

We cannot calculate this probability in large graphs with cycles!

ACMI uses loopy belief propagation to approximate marginal
probability distribution.

This paper focuses on improvements in ACMI-Belief Propagation
(BP) phase.
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ACMI phase 3: Particle Filtering

Recall: the resulting marginal probability distribution describes the
location of the Cα in each residue.

This does not account for residue side chains, only the backbone.

Phase 3 uses a sequential sampling algorithm (particle filtering) to
produce a physically feasible, all-atom, protein structure.
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ACMI and Belief Propagation

Iterative process: for each vertex (amino acid) compute the marginal
distribution over locations in the unit cell using local probability and
incoming messages.

Then compute the outgoing messages to the connected neighbors of
each vertex.

Figure: Figure 5 from paper. Lysine sending a message to Leucine. Notice
change in confidence of each peak after message is sent.
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ACMI-BP Message Scheduling

Belief propagation algorithm requires a message passing protocol.

Message scheduling protocols:

Round-robin: each vertex treated equally; no priority based on evidence
of information gain.

Residual Belief Propagation: prioritize messages with the most new
information.

Domain Knowledge: well-structured regions of protein sequence are
more likely to contain accurate information regarding local
conformation.

Domain knowledge approach prioritizes random variables deemed a
priori more accurate.
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Belief Propagation and Domain Knowledge

Domain knowledge approach prioritizes residues that are likely to be
in well-structured regions of the final 3D solution.

Decay factor in probabilities allows less reliable amino acids to work
up the queue.

Figure: Figure 1 from Chem Rev. 2014 Jul 9; 114(13): 6589?6631.
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Experimental Setup

Dataset consists of 10 “difficult” experimentally-phased electron
density maps.

Each test only differs in which message scheduling protocol is used
during ACMI-BP.

Each of the three ACMI-BP algorithms was used to produce a
marginal probability distribution.

ACMI-PF then samples all-atom structures from the marginal
probability distributions produced by phase 2.
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Experimental Results

Each point represents one of the 10 protein structures in the dataset.

The Rank of a (correct) residue is defined as the fraction of points in
the marginal probability distribution that have greater probability than
the true solution. The rank for all residues were averaged for each
protein.

Rank metric allows us to compare prediction results across differing
probability space sizes for each protein.

Figure: Figure 7 from paper.
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Experimental Results

ACMI-PF was used to sample physically-feasible protein structures
from the set of marginal probability distributions returned from the
belief propagation phase.

ACMI-PF fails to sample results produced by RBP protocol.

Figure: Figure 8 from paper. Correctness and completeness of predicted protein
structures using marginal probability distribution produced by BP and DOBP
message scheduling protocol.
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Paper Critique

Disordered proteins are abundant in eukaryotic cells; if a protein does
not have enough well-structured regions then the domain-knowledge
based priority function might be insufficient to push belief
propagation towards convergence.

Figure: Lucy Reading-Ikkanda/Quanta Magazine, “The Shape Shifting Army
Inside Your Cells”.

Develop a method to filter the locations with non-negligible
probabilities returned by the residual belief propagation (RBP). This
message scheduling protocol seems promising, but ACMI-PF requires
a smaller search space within density map.
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