

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories

Computational methods for single-particle cryo-electron microscopy

Daniel Hogan and Hugo Kitano

CS371 presentation

15 February 2017

CryoEM

Daniel Hogar Hugo Kitano

Introduction

Basics The Process Difficulties Clustering Back projectic Overfitting

Bayesian refinement

Ribosome trajectories

1 Introduction

- Basics
- The Process
- Difficulties
- Clustering
- Back projection
- Overfitting

2 Bayesian refinement

3 Ribosome trajectories

CryoEM

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories

Gaining traction in recent years due to better cameras

CryoEM

Daniel Hogai Hugo Kitanc

Introduction Basics The Process Difficulties Clustering Back projectio Overfitting

Bayesian refinement

Ribosome trajectories Gaining traction in recent years due to better cameras Crystallization avoided!

can change conformation

CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories Gaining traction in recent years due to better cameras Crystallization avoided!

- can change conformation
- difficult for larger molecules

CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projectior Overfitting

Bayesian refinement

Ribosome trajectories Gaining traction in recent years due to better cameras Crystallization avoided!

- can change conformation
- difficult for larger molecules

Lower resolution, but easier reconstruction problems

Setup

CryoEM

Daniel Hogar Hugo Kitano

Introductior Basics

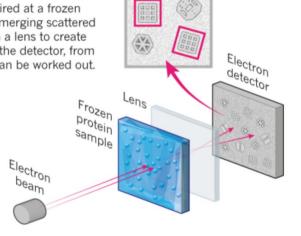
The Process Difficulties Clustering Back projectio Overfitting

Bayesian refinement

Ribosome trajectories

CRYO-ELECTRON MICROSCOPY

A beam of electron is fired at a frozen protein solution. The emerging scattered electrons pass through a lens to create a magnified image on the detector, from which their structure can be worked out.



(日) (同) (三) (三) (三) (三) (○) (○)

CryoEM

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories

Refine the 2D images

CryoEM

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories

Refine the 2D images

align movie frames to account for movement

CryoEM

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories

Refine the 2D images

- align movie frames to account for movement
- cluster images that look similar together to average them

CryoEM

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories

Refine the 2D images

- align movie frames to account for movement
- cluster images that look similar together to average them

3D reconstructions

Combine our 2D projections into a 3D structure

CryoEM

Daniel Hogai Hugo Kitanc

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome rajectories

Refine the 2D images

- align movie frames to account for movement
- cluster images that look similar together to average them

3D reconstructions

- Combine our 2D projections into a 3D structure
- Back-projection is difficult!

Bunny

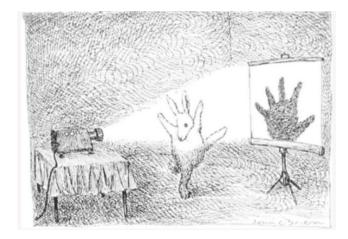
CryoEM

Daniel Hogai Hugo Kitanc

Introduction Basics The Process Difficulties Clustering Back projectior Overfitting

Bayesian refinement

Ribosome trajectories



From Joachim Frank, Three-dimensional electron microscopy of macromolecular assemblies: Visualization of biological molecules in their native state, 2006

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories

noisy images

CryoEM

Daniel Hogai Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projectio Overfitting

Bayesian refinement

Ribosome trajectories

noisy images

random protein orientations

CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projectio Overfitting

Bayesian refinement

Ribosome trajectories

- noisy images
- random protein orientations

■ 3D reconstruction

CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process **Difficulties** Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories

- noisy images
- random protein orientations

- 3D reconstruction
- risk of overfitting data

CryoEM

Daniel Hogai Hugo Kitano

Introduction Basics The Process Difficulties **Clustering** Back projectior Overfitting

Bayesian refinement

Ribosome trajectories

In order to create a 3D reconstruction, the 2D projections need to be clustered

CryoEM

Daniel Hogai Hugo Kitanc

Introduction Basics The Process Difficulties Clustering Back projectio Overfitting

Bayesian refinement

Ribosome trajectories

In order to create a 3D reconstruction, the 2D projections need to be clustered Chicken and egg problem ("ill-posed"):

CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process Difficulties **Clustering** Back projection Overfitting

Bayesian refinement

Ribosome trajectories In order to create a 3D reconstruction, the 2D projections need to be clustered Chicken and egg problem ("ill-posed"):

(日) (母) (目) (日) (日) (の)

orientation information is necessary for cluster determination

CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process Difficulties **Clustering** Back projection Overfitting

Bayesian refinement

Ribosome trajectories In order to create a 3D reconstruction, the 2D projections need to be clustered Chicken and egg problem ("ill-posed"):

- orientation information is necessary for cluster determination
- cluster information makes orientation determination tractable

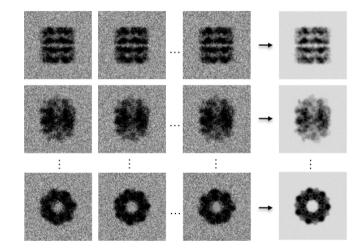
CryoEM

Daniel Hogai Hugo Kitanc

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian refinement

Ribosome trajectories



Pintilie http://people.csail.mit.edu/gdp/cryoem.html

Back projection

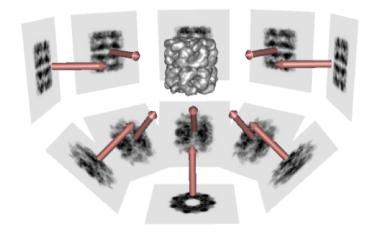
CryoEM

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection Overfitting

Bayesian efinement

Ribosome trajectories



Pintilie http://people.csail.mit.edu/gdp/cryoem.html

Overfitting

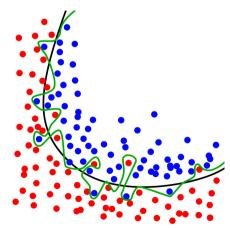
CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection **Overfitting**

Bayesian refinement

Ribosome trajectories Random noise becomes part of the model



Wikipedia https://en.wikipedia.org/wiki/File:Overfitting.svg

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Smoothing

CryoEM

Daniel Hoga Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection **Overfitting**

Bayesian refinement

Ribosome trajectories

Smoothing is a powerful way to reduce overfitting, but it's currently done via ad hoc filtering

Smoothing

CryoEM

Daniel Hogar Hugo Kitanc

Introduction Basics The Process Difficulties Clustering Back projectio **Overfitting**

Bayesian refinement

Ribosome trajectories

Smoothing is a powerful way to reduce overfitting, but it's currently done via ad hoc filtering

arbritary decisions using unstandardized heuristics, causes overfitting as well

Smoothing

CryoEM

Daniel Hogar Hugo Kitano

Introduction Basics The Process Difficulties Clustering Back projection **Overfitting**

Bayesian refinement

Ribosome trajectories Smoothing is a powerful way to reduce overfitting, but it's currently done via ad hoc filtering

arbritary decisions using unstandardized heuristics, causes overfitting as well

separate steps of particle alignment, class averaging, filtering, and 3D reconstruction

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Bayesian refinement Results of MAP estimation

Ribosome trajectories

Introduction

2 Bayesian refinement

- Bayesian refinement
- Results of MAP estimation

3 Ribosome trajectories

MAP estimator

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Bayesian refinement Results of MAP estimation

Ribosome trajectories We will try to maximize a single probability function that takes into account all of the steps

MAP estimator

CryoEM

Daniel Hogai Hugo Kitano

Introduction

Bayesian refinement

Bayesian refinement Results of MAF estimation

Ribosome trajectories

- We will try to maximize a single probability function that takes into account all of the steps
- Maximum a priori estimation, which uses prior information to make our prediction:

$$egin{aligned} \hat{ heta}_{\mathsf{MAP}} &= rgmax_{ heta} P\left(heta | D
ight) \ \hat{ heta}_{\mathsf{MAP}} &= rgmax_{ heta} P\left(D | heta
ight) P\left(heta
ight) \end{aligned}$$

Bayesian refinement algorithm

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Bayesian refinement Results of MA estimation

Ribosome trajectories This is very difficult!

$$V_{l}^{(n+1)} = \frac{\sum_{i=1}^{N} \int_{\phi} \Gamma_{i\phi}^{(n)} \sum_{j=1}^{J} \mathbf{P}^{\phi_{ij}^{T}} \frac{CTF_{ij}X_{ij}}{\sigma_{ij}^{2(n)}} \, d\phi}{\sum_{i=1}^{N} \int_{\phi} \Gamma_{i\phi}^{(n)} \sum_{j=1}^{J} \mathbf{P}^{\phi_{ij}^{T}} \frac{CTF_{ij}X_{ij}}{\sigma_{ij}^{2(n)}} \, d\phi + \frac{1}{\tau_{l}^{2(n)}}}$$
$$\sigma_{ij}^{2(n+1)} = \frac{1}{2} \int_{\phi} \Gamma_{i\phi}^{(n)} \left| X_{ij} - CTF_{ij} \sum_{l=1}^{L} \mathbf{P}_{jl}^{\phi} V_{l}^{(n)} \right|^{2} \, d\phi}$$
$$\tau_{l}^{2(n+1)} = \frac{1}{2} \left| V_{l}^{(n+1)} \right|^{2}$$

where

$$\Gamma_{i\phi}^{(n)} = \frac{P\left(X_i | \phi, \Theta^{(n)}, Y\right) P\left(\phi | \Theta^{(n)}, Y\right)}{\int_{\phi'} P\left(X_i | \phi', \Theta^{(n)}, Y\right) P\left(\phi' | \Theta^{(n)}, Y\right) d\phi'}$$

Less overfitting

CryoEM

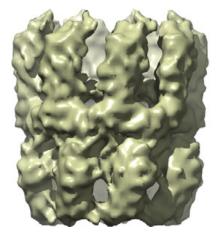
Daniel Hoga Hugo Kitan

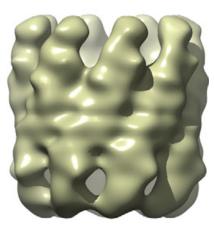
Introduction

Bayesian refinement Bayesian refinement Results of MAP estimation

Ribosome trajectories

Overfitted vs. MAP





Scheres http://dx.doi.org/10.1016/j.jmb.2011.11.010

Greater objectivity

CryoEM

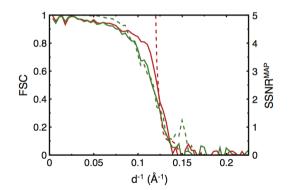
Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement Bayesian refinement Results of MAP

Results of Ma estimation

Ribosome trajectories The new approach (red) has higher resolution and greater objectivity than the old (green)



Scheres http://dx.doi.org/10.1016/j.jmb.2011.11.010

Future improvements

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement Bayesian refinement Results of MAP estimation

Ribosome trajectories Better microscopes and detectors will lead to less noise

Future improvements

CryoEM

Daniel Hogar Hugo Kitano

Introduction

Bayesian refinement Bayesian refinement Results of MAP estimation

Ribosome trajectories

- Better microscopes and detectors will lead to less noise
- More information about the relative orientations (especially for symmetric molecules)

Future improvements

CryoEM

Daniel Hogar Hugo Kitano

Introduction

Bayesian refinement Bayesian refinement Results of MAP estimation

Ribosome trajectories

- Better microscopes and detectors will lead to less noise
- More information about the relative orientations (especially for symmetric molecules)

Regularization and the use of prior information (used here!)

CryoEM

Daniel Hoga Hugo Kitan

Introduction

Bayesian refinement

Ribosome trajectories

Introductie Data Analysis Results Discussion

Introduction

2 Bayesian refinement

3 Ribosome trajectories

- Introduction
- Data
- Analysis
- Results
- Discussion

Ribosomes

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion Responsible for the synthesis of protein using a mRNA template

Ribosomes

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion

- Responsible for the synthesis of protein using a mRNA template
- Two subunits
 - Large subunit, composed of three rRNAs and 46 proteins

Small subunit, composed of one rRNA and 33 proteins

Ribosomes

CryoEM

Daniel Hogai Hugo Kitanc

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion

- Responsible for the synthesis of protein using a mRNA template
- Two subunits
 - Large subunit, composed of three rRNAs and 46 proteins

- Small subunit, composed of one rRNA and 33 proteins
- The subunits rotate during each step elongation

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion Objective: a series of structures of the ribosome to construct a time series

<=> <=> <=> <=> <=> <=> <=> <=> <</p>

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion Objective: a series of structures of the ribosome to construct a time series

Purify ribosomes

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion Objective: a series of structures of the ribosome to construct a time series

- Purify ribosomes
- Cryofix and image

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion Objective: a series of structures of the ribosome to construct a time series

- Purify ribosomes
- Cryofix and image
- Categorize by orientation and conformation

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion Objective: a series of structures of the ribosome to construct a time series

- Purify ribosomes
- Cryofix and image
- Categorize by orientation and conformation
- Determine structures

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion Objective: a series of structures of the ribosome to construct a time series

- Purify ribosomes
- Cryofix and image
- Categorize by orientation and conformation
- Determine structures
- Construct a time series

Raw images

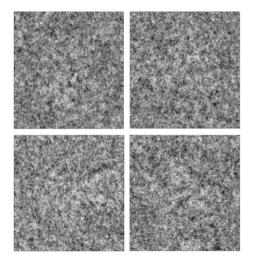
CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion



Dashti, et al. http://dx.doi.org/10.1073/pnas.1419276111

Data

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion

■ ~4,700 micrographs

Data

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion ■ ~4,700 micrographs

 \blacksquare ~1,100,000 particles found algorithmically

(日) (同) (三) (三) (三) (○) (○)

Data

CryoEM

Daniel Hogai Hugo Kitanc

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion

- ~4,700 micrographs
- \sim 1,100,000 particles found algorithmically
- \blacksquare ~850,000 particles after manual selection

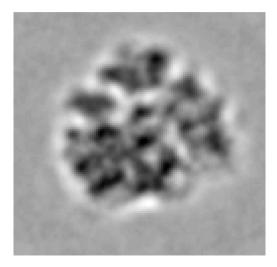
Oriented image

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data **Analysis** Results Discussion



Dashti, et al. http://dx.doi.org/10.1073/pnas.1419276111

<=> <=> <=> <=> <=> <=> <=> <=> <</p>

Analysis procedure

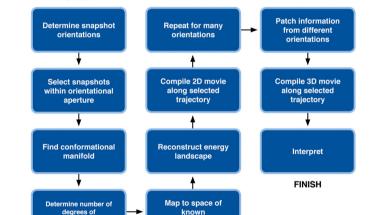
CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectorie: Introduction Data Analysis Results Discussion



eigenfunctions

Dashti, et al. http://dx.doi.org/10.1073/pnas.1419276111

freedom

START

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conformational manifold

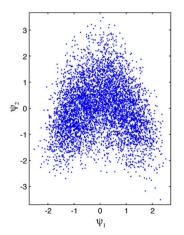
Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion

Determined by a non-linear analog of PCA



Dashti, et al. http://dx.doi.org/10.1073/pnas.1419276111

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q の

Analysis details

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion 50 distinct conformations were identified

Analysis details

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data **Analysis** Results Discussion 50 distinct conformations were identified

Ordering was inferred from similarity

Structures

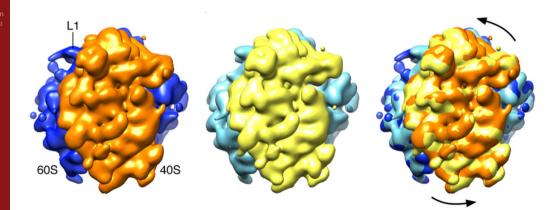
CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectorie: Introduction Data Analysis Results Discussion



Dashti, et al. http://dx.doi.org/10.1073/pnas.1419276111

Ribosome trajectory

CryoEM

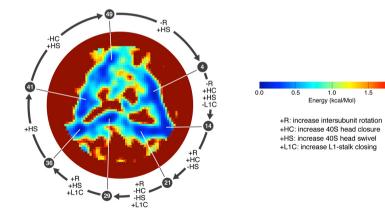
Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introductior Data Analysis **Results** Discussion

Free energy inferred by relative populations



2.0

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results Discussion

Lack of detail on the preparation of ribosomes

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introductior Data Analysis Results Discussion

Lack of detail on the preparation of ribosomes

- The imaged ribosomes were "not engaged in translation"
- But ribosomal subunits do not bind together in the absence of mRNA

(日) (母) (目) (日) (日) (の)

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introductior Data Analysis Results **Discussion**

- Lack of detail on the preparation of ribosomes
 - The imaged ribosomes were "not engaged in translation"
 - But ribosomal subunits do not bind together in the absence of mRNA
- The ribosomes were manually selected from the micrographs, introducing a potential source of bias

CryoEM

Daniel Hoga Hugo Kitano

Introduction

Bayesian refinement

Ribosome trajectories Introduction Data Analysis Results **Discussion**

- Lack of detail on the preparation of ribosomes
 - The imaged ribosomes were "not engaged in translation"
 - But ribosomal subunits do not bind together in the absence of mRNA
- The ribosomes were manually selected from the micrographs, introducing a potential source of bias

シロト 本部 トネヨト オヨト 一日 うろくの

Selecting images based on orientation before conformation