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PUNCTATE PROTEIN PATTERNS
& FLUORESCENCE

Give Rise to Sub-Cellular Spatial _ Actinin 1
Protein Distributions % ‘

High Specificity with high temporal
and spatial resolution of living cells

Protein localization and
compartmentalization central to
functionality

Protein Conformations:
Compartments have varying
chemical and physical
characteristics influencing

Metabolic Activity: Organelles
are locations of specialized
functions in the cell




MICROTUBULES

“Highway"” of the cells

Filamentous intracellular
Structural Components

Part of the Cytoskeleton

Readily identifiable when
fluoresced

Involved in
Nucleic and Cell Division
Cell Structure

Intracellular Protein Transport




THE PROBLEM

QUANTIFYING PATTERNS

 Established methods Unable to Recognize certain sub-patterns of major
organelle types

Complex interconnectivity between proteins and underlying cell structures

Variation Between Different Cell Types makes pattern generalizations
even more difficult

Distinguishing at High Resolution (membrane-bound organelles vs.
macromolecular complexes) so far inconclusive

« Quantification of Spatiotemporal Patterns beyond human interpretation
needed fur further work in cell biochemistry and behavior simulations

* Generation of Patterns for incomplete pattern families or novel, yet similar
proteins for simulation purposes




THE PAPER’S AIM

Fluorescence microscopy images of cells from A-431, U-20S and
U-251MG cell lines from Human Protein Atlas

Label all Images of proteins With Unclear Subcellular Pattern
annotations (“vesciles” or “cytoplasm”)

Already described systems for building image-derived, 2D or 3D
generative models of distributions of other punctate organelles or
microtubules within cells in previous papers

* Model Microtubule-Puncta Relationship not present in previous
model to enhance pattern recognition

Create Generative Model of Sub-Cellular Patterns




THE METHOD

THE FOUNDER BASELINE

¢ 11 Founder Proteins
Subcellar location reasonably Well Characterized

Found in 11 Specific, Distinguishable types of punctate patterns

Showed Similar Pattern Across all three cell types

Represent Wide Range of membrane and non-membrane bound
Compartments

o Calculated feature matrices for all cells for each combination of
Eleven Proteins X Three Cell Lines

* Verification of Relevance through Inspection & Principal Component Analysis




THE METHOD
IMAGE PROCESSING

Isolation of high spatial-frequency Foreground (Puncta) and Background
(Fluorescence)

Compute puncta Characteristics an microtubule-puncta distances

Probability Density Functions for position of puncta and background
intensity




THE METHOD

FEATURE VARIANCE

* Feature Characterization of puncta within cell regarding
Microtubule association / distance
Relationship to cell geometry
Density
Intensity
Appearance

 Gives rise to Feature Vector containing Major Modes of Variation among punctate patterns

U-251 MG

— COPI
— COPII
= Caveolae
Coated Pits
Early Endosomes
- |ate Endosomes
- Lysosomes
— Peroxisomes
= RNP bodies
= Recycling Endosomes
Retromer




THE METHOD
PRINCIPAL COMPONENT ANALYSIS

PCA shows Variation in Features to verify as part of reliable feature set

Principal components = underlying structure in the data

Variation in regards to principal component baseline
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THE METHOD
CLASSIFICATION TASK

* Classification approach based on SVM and Bayes Error Rate

* Dissimilarity Measure: Comparing two images of cell patterns, classifying from
O (totally inseparable) to 1 (totally separable)

* Training Set of 11 Founder Patterns:
Classification using held-out images
Classification only after reaching statistically significant Threshold (~0.72)
Average class accuracy = 86.9%

Average class accuracy without microtubule distribution = 82.8%

* Relationship to microtubules Provides Essential Information for Pattern




THE RESULTS
CLASSIFICATION

+ Test Set of proteins other than founders: Seme propoaed

* Measure dissimilarity between image and each founder pattern NMEG CoPll
POCOA Cavedae
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THE METHOD

GENERATIVE MODEL OF PUNCTATE PROTEIN DISTRIBUTIONS

* How to best describe sub-cellular pattern?
* Current methods:

Descriptions using Unstructured Text
—> Word insufficient for reader to mentally construct pattern

Show Example Image
—> No information about variation

Descriptive Feature vector or matrix
—> Only recognizes new example, does not produce example of pattern

None in silico
—> Required for mathematical simulations of cell biochemistry and behavior

 Answer: Generative Models ?

» Capture Underlying Properties as Statistical Distributions to synthesize new images




THE METHOD

GENERATIVE MODEL OF PUNCTATE PROTEIN DISTRIBUTIONS

Models of Distribution d
(nuclear, cell shape, microtubule)

Models of Puncta Distribution p
(using features capturing cell shape
and microtubule dependence)

Size shape and Intensity of vesicles
modeled independently

Generates distributions for Foreground and Background
Dependent on correct previous models

Gave Rise to Fairly Accurate Image Generation




THE RESULTS

Lysozomes
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DISCUSSION

Negative
Paper Lacks Focus

Continuation of Glory & Murphy’s 2007 “Automated Subcellular Location
Determination and High-Throughput Microscopy”

* Should be read in tandem with that paper
Readership Expectation skewed (Murphy writing papers since 1998)
Account for Protein Isoforms
Positive
* Huge Application Potential

« Murphy Lab and CellOrganizer.org

« Good Scientific Method (PCA, NOVA)



http://CellOrganizer.org

Scoring diverse cellular
morphologies in image-
based screens with

iterative feedback and
machine learning

Thouis R. Jones, Anne E. Carpenter, Michael R.
Lamprecht, Jason Moffat, Serena J. Silver, Jennifer K.
Grenier, Adam B. Castoreno, Ulrike S. Eggert, David E.
Root, Polina Golland, and David M. Sabatini



Important for Biology

e . Hldp

' AT 15 < e

i

ar §5>
:,ﬂ“m.

1ON IS

e ARG e
AL

Lypm

© &b

sUEE HIH AR

U—g ¢ ntillt iy

1]
|

T i

Visual Inspect


http://www.genetics.org/content/genetics/172/4/2325/F6.large.jpg?width=800&height=600&carousel=1

Why this is important

Biologists have discovered many important
pathways because they found mutant organisms
and deaded to determine the genes that




Motivation

|ldentifying mutant cells in microarrays by

| ] | ] e | I | LI N oF )

However, analyses that cannaot be achieved i | Cu It
with the existing applicalions in commercial
software remains challenging™. Some investi-
gators have turned to tedious manual inspec-
Hon ol imaees for scorinez examole shenotvnoes

identified cells in mctaphas'.c h\ c%‘npirically i{ppl},’ing scquential
gates based on 4 measured features of the DNA stain of each cell.

This process took more than a week. With our new approach, we lm a g ine g oin g th rou g h a h u g e
identificd metaphase nuclei and accurately scored the entire . . o
screen within 4 h, of which only 1 h was hands-on time (Fig. 57 microa rray to |on for |nd IVId ua|

cells!

If we use machine learning, we often don't
have training data for what mutants look like,
because they are rare in the first place!



Motivation

If we try to use machine learning to identify
mutant cells, we often don’t have training data
for what mutants look like, because they are

has to
identify

examples Y ETY  Train a nlacel

(usually a | model

Real images Cell mutant
Labels J
of cells scores




Their Solution

A Automated Cell Image Processing B Horative Machine Learning C  Automated Scaring
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A system to automate cell image
processing, perform human-in-the-loop
machine learning, and automate scoring

afterwards for a phenotype we are trying to
identify



A: Automated Cell Image Processing

1. Load microarray 3. Other features are also

extracted such as the number
of neighbors a cell has, the

images into the
pipeline. They use
CellProfiler to
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B: lterative Machine Learning
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B: What is Boosting?

Old machine learning N - 4 _|_

algorithm [Freund and - o=

Schapire ‘95] that trains N ,
many weak (dumb) classifiers

to learn simple rules using
Combin
al

coordinate descent, and
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new rule that splits the data

and incorporates it into the
model




C: Automated Scoring
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Results: Performance vs Regression Stumps
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Results: Phenotype vs Feature Power
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Other Work:

Valen et al. used
convnets to
segment and
classify cells in
Imaging
experiments

BUT

They had to use
200-400k patches
of images for
training!

Deep Learning
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Fast, accurate reconstruction of cell
lineages from large-scale fluorescence
microscow data

1l

Fernando Amat, iam Lemon, Daniel P Mossing, Katie McDole, Yinan
Wan, Kristin Branson, Eugene W Myers, & Philipp J Keller
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Motivation

« Cell lineage: developmental history of a cell as traced back to
the cell from which it arises

« Cell lineage reconstruction: accurate reconstruction of the
positions, movements, and divisions of cells

« Important goal for developmental biology

« Computational methods for cell lineage reconstruction involve
state-of-the-art live imaging technologies that record
development at cellular level for several days

* Yields terabytes of data

« Automated cell segmentation (identifying cells in an image) &
tracking (following cell movement over time) is challenging,
capturing divisions is even more challenging




Pipeline Overview

New approach to automated cell
lineage reconstruction:

1) Segment image by identifying
individual cells

2) Detect cell divisions using a
probabilistic model

3) Flag areas where model might
have failed and use heuristic
rules or manual inspection
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Automated Cell Segmentation

Considered all possible partitions of image into “supervoxels”
Voxel: small unit that defines a point in 3D space

Supervoxel: connected set of voxels belonging to a nucleus; each
nucleus can be represented by multiple supervoxels

Requires only 2 parameters:T, which affects merging of image
regions, and global background intensity threshold

Hierarchical supervexel oversegmentation




Connecting Supervoxels in Space/Time

 Modeled cell location by nucleus-specific fluorescent labels

« Detected cell divisions by using probabilistic model called
Gaussian mixture model

Fit Gaussian mixture model and detect cell divisions

1) Initialize t with t—1
2) Fit model

§> Detect divisions




Potential Failure Flagging

* Apply heuristic rules to improve accuracy

« Algorithm determines local spatiotemporal windows in which the
model might have been erroneous

Incorporate temporal context
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Results

Analysis of lightsheet microscopy on Drosophila embryonic development:

Initial:

Ventral S1 neuroblast tracks

After 24 hours:

Reoconstruclion

Ventral view

Dorsal S1 neuroblast tracks
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Automated Segmentation & Tracking



http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV2.html
http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV2.html
http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV2.html

Aggregate Results

Euclidean distance between Linkage accuracy: fraction of
manually and automatically correct linkage assignments in
marked nuclei centroids consecutive time points
- Average Euclidean distance * Average linkage accuracy
below nuclear radius between 90% and 99%
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Performance

« Linear scaling of computation time with the number of cells tracked
when parallelizing on multicore CPU & GPU platforms

« Manual inspection of only 15% of all data points was required to
correct 97% of the errors
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Recap

«  Strengths

« Generality — considered 3 different model types with 3 different
types of fluorescence microscopes

« Scalability — analyzed terabyte-sized data with up to 20,000 cells
per time point at 26,000 cells per minute on single computer
workstation

« Ease of use — adjusted only two parameters

Weaknesses
« Flagged all cell divisions & cell deaths for manual inspection
« Naive assumption to consider context of only 1 time step

« Could have used clearer explanation of performance gain

« Could pave the way for “smart microscopes”
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Additional Work: Predicting Neuroblast Cell Types

* Used machine learning to predict neuroblast cell types using just
information about timing and orientation of cell divisions

* Achieved 6-fold to 10-fold higher probability than probability of
assigning the correct cell identity at random
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Additional Slide: Supervoxel Partitioning Methodology

Algorithm: watershed
techniques and persistence-
based clustering

Intuition: group voxels into
coherent regions belonging
to the same nucleus

Use a parameter (T) to
determine a hierarchical
order between the basins




Additional Slide: Drosophila Cell Lineage Reconstruction
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