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PUNCTATE PROTEIN PATTERNS  
& FLUORESCENCE

• Give Rise to Sub-Cellular Spatial 
Protein Distributions 

• High Specificity with high temporal 
and spatial resolution of living cells 

• Protein localization and 
compartmentalization central to 
functionality 

• Protein Conformations: 
Compartments have varying 
chemical and physical 
characteristics influencing  

• Metabolic Activity: Organelles 
are locations of specialized 
functions in the cell



MICROTUBULES
• “Highway” of the cells 

• Filamentous intracellular 
Structural Components 

• Part of the Cytoskeleton 

• Readily identifiable when 
fluoresced  

• Involved in 

• Nucleic and Cell Division 

• Cell Structure 

• Intracellular Protein Transport



THE PROBLEM

• Established methods Unable to Recognize certain sub-patterns of major 
organelle types 

• Complex interconnectivity between proteins and underlying cell structures 

• Variation Between Different Cell Types makes pattern generalizations 
even more difficult 

• Distinguishing at High Resolution (membrane-bound organelles vs. 
macromolecular complexes) so far inconclusive 

• Quantification of Spatiotemporal Patterns beyond human interpretation 
needed fur further work in cell biochemistry and behavior simulations 

• Generation of Patterns for incomplete pattern families or novel, yet similar 
proteins for simulation purposes

QUANTIFYING PATTERNS



THE PAPER’S AIM

• Fluorescence microscopy images of cells from A-431, U-2OS and 
U-251MG cell lines from Human Protein Atlas 

• Label all Images of proteins With Unclear Subcellular Pattern 
annotations (“vesciles” or “cytoplasm”)  

• Already described systems for building image-derived, 2D or 3D 
generative models of distributions of other punctate organelles or 
microtubules within cells in previous papers 

• Model Microtubule-Puncta Relationship not present in previous 
model to enhance pattern recognition 

• Create Generative Model of Sub-Cellular Patterns



THE FOUNDER BASELINE

THE METHOD

• 11 Founder Proteins 

• Subcellar location reasonably Well Characterized  

• Found in 11 Specific, Distinguishable types of punctate patterns 

• Showed Similar Pattern Across all three cell types 

• Represent Wide Range of membrane and non-membrane bound 
Compartments 

• Calculated feature matrices for all cells for each combination of  
Eleven Proteins X Three Cell Lines 

• Verification of Relevance through Inspection & Principal Component Analysis



IMAGE PROCESSING

THE METHOD

• Isolation of high spatial-frequency Foreground (Puncta) and Background 
(Fluorescence) 

• Compute puncta Characteristics an microtubule-puncta distances  

• Probability Density Functions for position of puncta and background 
intensity



FEATURE VARIANCE

THE METHOD

• Feature Characterization of puncta within cell regarding 
• Microtubule association / distance 
• Relationship to cell geometry 
• Density 
• Intensity 
• Appearance 

• Gives rise to Feature Vector containing Major Modes of Variation among punctate patterns



PRINCIPAL COMPONENT ANALYSIS

THE METHOD

• PCA shows Variation in Features to verify as part of reliable feature set 

• Principal components = underlying structure in the data 
• Variation in regards to principal component baseline



CLASSIFICATION TASK

THE METHOD

• Classification approach based on SVM and Bayes Error Rate 

• Dissimilarity Measure: Comparing two images of cell patterns, classifying from 
0 (totally inseparable) to 1 (totally separable) 

• Training Set of 11 Founder Patterns: 

• Classification using held-out images 

• Classification only after reaching statistically significant Threshold (~0.72) 

• Average class accuracy = 86.9%  

• Average class accuracy without microtubule distribution = 82.8% 

• Relationship to microtubules Provides Essential Information for Pattern



CLASSIFICATION

THE RESULTS

• Test Set of proteins other than founders: 

• Measure dissimilarity between image and each founder pattern 
and choose lowest 

• “Ambiguous” if several below multiple thresholds simultaneously 

• 125 Protein Patterns Identified 

• Found literature supporting most annotations 

• No Assignment for 3 reasons: 

• Low-Quality Staining  

• Cytoplasmic proteins without discernible punctate pattern  

• Multi-pattern proteins



GENERATIVE MODEL OF PUNCTATE PROTEIN DISTRIBUTIONS

THE METHOD

• How to best describe sub-cellular pattern? 

• Current methods: 

• Descriptions using Unstructured Text  
—> Word insufficient for reader to mentally construct pattern 

• Show Example Image  
—> No information about variation 

• Descriptive Feature vector or matrix  
—> Only recognizes new example, does not produce example of pattern 

• None in silico  
—> Required for mathematical simulations of cell biochemistry and behavior 

• Answer: Generative Models ? 

• Capture Underlying Properties as Statistical Distributions to synthesize new images



GENERATIVE MODEL OF PUNCTATE PROTEIN DISTRIBUTIONS

THE METHOD

• Models of Distribution d  
(nuclear, cell shape, microtubule) 

• Models of Puncta Distribution p  
(using features capturing cell shape  
and microtubule dependence) 

• Size shape and Intensity of vesicles  
modeled independently  

• Generates distributions for Foreground and Background 

• Dependent on correct previous models 

• Gave Rise to Fairly Accurate Image Generation



THE RESULTS



DISCUSSION

• Negative 

• Paper Lacks Focus 

• Continuation of Glory & Murphy’s 2007 “Automated Subcellular Location 
Determination and High-Throughput Microscopy”  

• Should be read in tandem with that paper 

• Readership Expectation skewed (Murphy writing papers since 1998) 

• Account for Protein Isoforms 

• Positive 

• Huge Application Potential 

• Murphy Lab and CellOrganizer.org 

• Good Scientific Method (PCA, NOVA)

http://CellOrganizer.org
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Visual Inspection is Important for Biology!

http://www.genetics.org/content/genetics/172/4/2325/F6.large.jpg?width=800&height=600&carousel=1


Why this is important
Biologists have discovered many important 

pathways because they found mutant organisms 
and decided to determine the genes that 

caused their phenotypes



Motivation
Identifying mutant cells in microarrays by 
hand is really difficult

Imagine going through a huge 
microarray to look for individual 

cells!
If we use machine learning, we often don’t 

have training data for what mutants look like, 
because they are rare in the first place!



Motivation
If we try to use machine learning to identify 

mutant cells, we often don’t have training data 
for what mutants look like, because they are 

rare in the first place!
Training 

examples 
(usually a 

lot)

Labels

Train a 
model

Model now 
has to 
identify 
mutants

Real images 
of cells

Cell mutant 
scores



Their Solution

A system to automate cell image 
processing, perform human-in-the-loop 
machine learning, and automate scoring 

afterwards for a phenotype we are trying to 
identify



A: Automated Cell Image Processing
1. Load microarray 
images into the 
pipeline. They use 
CellProfiler to 
segment each cell 2. CellProfiler 
then takes each 
cell in the 
microarray and 
determines the 
Texture, Intensity, 
and Shape of the 
nucleus, 
cytoplasm, and 
cell in general

3. Other features are also 
extracted such as the number 
of neighbors a cell has, the 
number of neighbors a nuclei 
has, and the eccentricity of 
nuclei and cells. ~610 features 
in total!



B: Iterative Machine Learning2. Give 
batch of 

cell 
images to 
biologist

3. 
Biologist 
selects all 
the cells 

that 
conform 
to the 

phenotyp
e

4. The 
positive 

examples 
and 

negative 
examples 

are 
passed 
back

5. The 
boosting 
algorithm 
trains an 
epoch on 

the 
examples 

and 
develops 

a rule

First: Biologist chooses 
the phenotype to identify. 

Examples include cells with 
actin blebs, cells currently in 
metaphase, or motile cells 



B: What is Boosting?
Old machine learning 
algorithm [Freund and 
Schapire ‘95] that trains 

many weak (dumb) classifiers 
to learn simple rules using 
coordinate descent, and 

combines the rules to 
generate more intelligent 

predictions  

Combin
e!

Whenever a batch is scored 
by the by the biologist, the 
boosting algorithm learns a 
new rule that splits the data 
and incorporates it into the 

model



C: Automated Scoring
The boosting 
algorithm is 

applied on the 
rest of the cells 

for similarity 
scoring with the 

phenotype

The 
computer 
does really 
well 
compared 
to humans!



Results: Performance vs Regression Stumps

More regression stumps  = higher 
accuracy. Curves tend to look like this 

when things go well:
Accurac
y

Regression 
stumps



Results: Phenotype vs Feature Power
The lighter the 
square, the more 
important that 
feature is to a 
phenotype
Cytoplasm intensity 
is not very 
important to 
identifying crescent 
nucleiNuclear texture is 
very important to 
identifying 
prometaphase



Other Work: Deep Learning
Valen et al. used 

convnets to 
segment and 

classify cells in 
imaging 

experiments 

BUT 

They had to use 
200-400k patches 

of images for 
training! 
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Fast, accurate reconstruction of cell 
lineages from large-scale fluorescence 
microscopy data
Fernando Amat, William Lemon, Daniel P Mossing, Katie McDole, Yinan 
Wan, Kristin Branson, Eugene W Myers, & Philipp J Keller



Motivation
• Cell lineage: developmental history of a cell as traced back to 

the cell from which it arises

• Cell lineage reconstruction: accurate reconstruction of the 
positions, movements, and divisions of cells

• Important goal for developmental biology

• Computational methods for cell lineage reconstruction involve 
state-of-the-art live imaging technologies that record 
development at cellular level for several days

• Yields terabytes of data

• Automated cell segmentation (identifying cells in an image) & 
tracking (following cell movement over time) is challenging, 
capturing divisions is even more challenging



Pipeline Overview
New approach to automated cell 
lineage reconstruction:

1) Segment image by identifying 
individual cells

2) Detect cell divisions using a 
probabilistic model

3) Flag areas where model might 
have failed and use heuristic 
rules or manual inspection



Automated Cell Segmentation
• Considered all possible partitions of image into “supervoxels”

• Voxel: small unit that defines a point in 3D space

• Supervoxel: connected set of voxels belonging to a nucleus; each 
nucleus can be represented by multiple supervoxels

• Requires only 2 parameters:τ, which affects merging of image 
regions, and global background intensity threshold



Connecting Supervoxels in Space/Time
• Modeled cell location by nucleus-specific fluorescent labels

• Detected cell divisions by using probabilistic model called 
Gaussian mixture model



Potential Failure Flagging
• Apply heuristic rules to improve accuracy

• Algorithm determines local spatiotemporal windows in which the 
model might have been erroneous



Results 
Analysis of lightsheet microscopy on Drosophila embryonic development:

Initial: After 24 hours:

Tracks of eight such neuroblasts during germ band extension:



Automated Segmentation & Tracking

http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV2.html

http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV2.html
http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV2.html
http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV2.html


Aggregate Results
Euclidean distance between 
manually and automatically 
marked nuclei centroids

• Average Euclidean distance 
below nuclear radius

Linkage accuracy: fraction of 
correct linkage assignments in 
consecutive time points

• Average linkage accuracy 
between 90% and 99%

mouse



Performance
• Linear scaling of computation time with the number of cells tracked 

when parallelizing on multicore CPU & GPU platforms

• Manual inspection of only 15% of all data points was required to 
correct 97% of the errors



Recap
• Strengths

• Generality – considered 3 different model types with 3 different 
types of fluorescence microscopes

• Scalability – analyzed terabyte-sized data with up to 20,000 cells 
per time point at 26,000 cells per minute on single computer 
workstation

• Ease of use – adjusted only two parameters 

• Weaknesses

• Flagged all cell divisions & cell deaths for manual inspection

• Naïve assumption to consider context of only 1 time step

• Could have used clearer explanation of performance gain

• Could pave the way for “smart microscopes”
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Additional Work: Predicting Neuroblast Cell Types

• Used machine learning to predict neuroblast cell types using just 
information about timing and orientation of cell divisions

• Achieved 6-fold to 10-fold higher probability than probability of 
assigning the correct cell identity at random



Additional Slide: Supervoxel Partitioning Methodology

• Algorithm: watershed 
techniques and persistence-
based clustering

• Intuition: group voxels into 
coherent regions belonging 
to the same nucleus

• Use a parameter (τ) to 
determine a hierarchical 
order between the basins



Additional Slide: Drosophila Cell Lineage Reconstruction

http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV28.html 

http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV28.html
http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV28.html
http://www.nature.com/nmeth/journal/v11/n9/fig_tab/nmeth.3036_SV28.html

